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Appendix

This appendix is organized as follows. In Appendix A, we give the visualization analysis
of PEDConv to further evidence its effectiveness. In Appendix B, we discuss the inference
run-time of the proposed PEDConv compared to static convolutional baseline and other dy-
namic convolution methods. In Appendix C, we investigate the performance of PEDConv at
different model sizes. In Appendix D, we perform a series of ablation studies on the gener-
ator module design. In Appendix E, we compare the multiplicative type reparameterization
in PEDConv versus a variant of additive type reparameterization. In section F, we provide
the mathematical derivations for Equation 4 and 6 in the main paper.
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Figure 1: Mlustration of the proposed parameter-efficient dynamic convolution (PEDConv).

A Visualization

To further evidence the effectiveness of PEDConv, we adopt Grad-CAM [4] as the tool to
visualize the attention-map produced by ResNet50 with PEDConv for classification on Im-
ageNet. Grad-CAM generates the heatmap representation that helps understand as to what
region of the input image influence most to the model’s prediction. The results are shown in
Figure 2. It can be clearly seen that the attention-maps produced by ResNet50 with PED-
Conv can more precisely locate the target objects without expanding to the backgroud areas
or non-target objects compared to baseline ResNet50. These visualization may help explain
why PEDConv achieves significant accuracy gain over the baseline models.
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Figure 2: Grad-CAM visualization of PEDConv applied to ResNet50 compared to baseline
static convolution on images randomly sampled from ImageNet. It is obvious that ResNet50
with PEDConv captures richer context information and more precisely locates objects of
interest, which may explain the accuracy improvement of PEDConv over the baseline.

B Inference run-time analysis

In Table 1, we report the CPU inference run-time of PEDConv applied to diverse CNN
architectures. The run-time is measured by averaging the feed-forward inference time of
5000 images with batch size 1 on the PyTorch platform. Firstly, compared with baseline
static convolution, PEDConv consumes only 4 ~ 7% more inference run-time for the con-
sidered four CNN architectures on ImageNet, while achieving significant Top-1 accuracy im-
provement. This result suggests that PDConv can mostly maintain the inference efficiency.
Moreover, compared with previous dynamic convolution [2], our method demonstrates less
inference run-time and better accuracy. This result further evidences the advantage brought
by our parameter-efficient tensor-decomposition based reparameterization, compared to the
parameter-inefficient multi-weight aggregation schema in [2].

Model ‘ Method ‘ FLOPs ‘ Run-time ‘ Top-1 (%)
. Baseline 569M 167ms 71.9
MobileNetV1 | pencony | 579M | 177ms 75.9
Baseline 300M 222ms 72.0
MobileNetV2 | DYConv [2] | 313M 248ms 75.2
PEDConv 307M 240ms 75.5
Baseline 1.81G 112ms 70.4
ResNet18 DYConv [2] 1.85G 125ms 72.7
PEDConv 1.83G 120ms 74.2
Baseline 4.1G 276ms 76.2
ResNetSO | pepcony | 42G | 288ms 80.5

Table 1: Realistic inference run-time of the proposed PEDConv applied to diverse CNN architectures
on ImageNet. PEDConv can mostly maintain the inference efficiency with small penalty in run-time
while significantly improving Top-1 accuracy over baseline. Moreover, PEDConv demonstrates better
accuracy-efficiency trade-off compared to prior art.
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C PEDConv at different model sizes

We investigate the performance of PEDConv applied to different model sizes. On ImageNet
dataset, we carry out experiments on [0.25x, 0.5x, 0.75x, 1x] of MobileNetV1 by using
PEDConv to replace the standard convolutions. The results are shown in Figure 3. As
observed, smaller models with PEDConv shows larger accuracy improvements than larger
models. We suspect this is because smaller models have too few channels in each layer to
extract useful features. By replacing standard convolution with PEDConv, small models may
improve their representation ability, leading to better accuracy.
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Figure 3: Results of applying PEDConv to different model sizes of MobileNetV1 on ImageNet.

D Ablation study on generator module design

We investigate different design choices of the generator module for generating the decom-
position components (cf. Equation 7 in the main paper). By default, the generator takes as
input the global context extracted by applying global average pooling (GAP) to the layer’s
input feature-maps corresponding a certain input image. Then, a bottleneck two-layer MLP
is used to generate the decomposition components, where the bottleneck size is set to Cj,, /16.
In the first part of Table 2, we compare GAP (1*-order pooling) versus bilinear pooling [3]
(2"-order pooling) to examine whether second-order statistic of the feature-maps can better
guide the input-dependent weight reparameterization for dynamic convolution. The result
shows that GAP yields higher Top-1 accuracy than bilinear pooling, suggesting that 1%-
order global context is already discriminative and informative, while being more efficient
than 2"?-order one. In the second part of Table 2, we vary the bottleneck size of the MLP,
where a wider bottleneck size can further improve the accuracy of PEDConv, but at cost of
more model parameters. In the third part of Table 2, we consider a partial sharing scheme,
where each residual block shares the same generator module. The result indicates that using
separate generator module for each individual layer gives the best accuracy.

E Multiplicative vs. Additive reparameterization

By default, PEDConv adopts multiplicative type reparameterization, i.e., W(X) = Wpase ©
(7(x) ® ¢(x) ® y(x)) (cf. Equation 2 in the main paper). For comparison, we experi-
ment with a variant of PEDConv employing additive type reparameterization, i.e., W(x) =
Whase + (7(X) ® ¢ (x) ® w(x)). The results are shown in Table 3, where we apply PEDConv
to ResNet18 on ImageNet. As shown, our multiplicative type tensor decomposition based
weight reparameterization leads to better Top-1 accuracy.
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Generator ablations ‘ Params. | FLOPs ‘ Top-1 (%)
Global context GAP (1% -order) 11.9M 1.83G 74.2
Bilinear Pooling (2" -order) 11.9M 2.04G 73.6
. Cin/16 11.9M 1.83G 74.2
Bottleneck size Cin /4 126M | 1.84G | 749
Partial sharin X 11.9M 1.83G 74.2
arhal sharing v 11.8M | 1.83G 73.4

Table 2: Ablation study on the generator module design. Results are obtained by applying PEDConv
to ResNet18 on ImageNet.

Method | Params. | FLOPs | Top-1 (%)

Multiplicative reparameterization
Additive reparameterization

11.9M 1.83G 74.2
11.9M 1.83G 73.0

Table 3: Comparison of multiplicative reparameterization in PEDConv versus a variant of additive
reparameterization. Results are obtained by applying PEDConv to ResNet18 on ImageNet.

F Derivations for Equation 4 and 6 in the main paper

Derivation for Eq.4

logpe (y]x) = Dx1(q4 (g%, ¥) [ Po (8]X,¥)) +Eqy, (gx.y) [~10ggy (8]X,y) +logpe (v, g[x)]
> By, gx.y) [—10ggs (g[%,¥) +logpe (. g[x)]
=Ky, (glxy) [—10890 (g]X,¥) +logpe (g]x)] + Ey, (glx.y) [logre (v]x, 8)]
= —Dk1(q4(g[X,¥||Po(8[x)) + Eqy, (gx.y) logpo (¥[x,8)]

(a
:) E[)g (g[x) [logpe (Y‘Xag)] (1)

where in step (a), we follow [5] to make the approximate posterior g4 (g|x,y) share the same
form with the conditional prior pg(g|x), such that the KL divergence between them becomes
zero. By sharing the same form, the training and testing pipeline would become consistent.

Derivation for Eq.6 Based on the chain rule of mutual information,

I((x,y);g) = I(x;g) +1(y; g[x)

For the first term, since the true posterior distributions are intractable, we use pg(x|g) to
approximate the posteriors by following the Variational Information Maximization [1]:

I(x;g) = H(x) — H(x|g)
= H(x) + Eg(g)[Ex~p(xlg)[logp(x]g)]]
= H(x) + Egpg) [DxL(P(X[8) [ Po (XI2)) + Ex~p(xig) [logPe (x|g)]]
> H(x) +Egp(g) [Exp(x|g) [l0gpe (x|g)]]
= H(x) + Ey_px)[Egp(gx) [logpo (x/8)]]
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where H(-) denotes the entropy of a random variable. H(x) is a constant term for a given
input x. Similarly, for the second term, it holds that

I(y; g|x) > H(le) + IEy~p(y\x) [Eng(g\y,x) [logpg (Y‘Xa g)]]

By combining the lower bounds of both first and second term, we can obtain the lower bound
for the MI objective as Equation 6 in the main paper.
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