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A Properties of Huber distribution

A.1 Normalizing factor of Huber distribution

Recall

p(X| V,A,8) o< exp <—h5 (||A1/2(x—v)H2)) (14)

To make this integrate to 1 we need a normalizing factor Z. It will be a function of the
parameters of the distribution, i.e. v, A and §. First we consider how v and A influence the
normalizing factor. By doing the variable substitution y = A'/2(x — v) we get the following

W/PX\#AS) (15)
xeRd
1
m / p(y|0,1,8)dy (16)
yeRd

Z(A v, 8)AT7]

Solving this with respect to Z gives

1)
Z(0.v.8) = P40 (19)

By using the normalizing factor we get the pdf for the distribution

||12

2@ exp (—h5 <||A'/2(X—v)||2)> (19)

We find the expression of ¢;(8) by evaluating the integral which defines it. By doing a
change to spherical coordinates and using radial symmetry we get

p(x|V,A,8) =

3) :/\Sd,1|rd*1exp(—h5(r))dr (20)
0
S oo
= |Sd,1|(/rdflexp(—r2/2)dr—|—/rdﬁlexp(—5r+ 8%/2)dr) 21
0 1)
= [Sa-1l(a(d = 1,8) +exp(§°/2)b(d — 1,8)) (22)

Where |S,] is the volume of a d dimensional unit sphere Sy = {x € R¥*!: ||x|][, =1}.a
and b are defined by the two integrals.
We first notice

S
a(0,8) = /exp(frz/Z)dr: \/ferf(ﬁ/\/i) (23)
0
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and

)
a(l,6) = /r*exp(—r2/2)dr = [—exp(—rz/Z)]g =1—exp(8%/2) (24)
0

by performing integration by parts we get

[
a(n,d) :/r"_lr*exp(frz/Z)dr (25)
0
1)
= [=exp(—2/2)] + / (n—1)r"2exp(—1*/2) (26)
0
=—8"texp(—82/2)+ (n—1)a(n—2,8) 27

from this we have recursively defined a(n, §) for all values.
similarly for b

=

B B _exp(—8?)
b(0,5) = 5/ exp(~6r)dr = S22 (28)
b(n,d) :/r"exp(—Sr)dr (29)
[
r =7 1
= {exp(5r)] Jr/nr" exp(—0r)dr (30)
= 8" lexp(—8%) +nb(n—1,8) 31)

we have now defined a and b for all n and J, thereby also the normalizing the normalizing
constant for all d and §.

A.2 Variance of huber distribution

The variance for p(x | 0,1,8) can be found by

a(d+1,8)+exp(82/2)b(d +1,5)
a(d—1,8)+exp(82/2)b(d—1,3)

-
BUXIR) = Bl [ exp(hir))ar = 62)
0

Due to symmetry we know that Var(X) is a diagonal matrix and ¢r(Var(X)) = E(||X]|3)
therefore

a(d+1,8) +exp(82/2)b(d +1,8)

Var(X) = d(a(d—1,8) +exp(82/2)b(d — 1,8))

(33)
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We get the following after doing a variable substitution y = rl/2x

a(d+1,8) +exp(82/2)b(d +1,8)
d(a(d—1,8)+exp(6%/2)b(d —1,6))

The expected distance between the mean and a sample will then be

Var(Y) =

X 34)

E(||Y[]3) = E(er(Y'Y)) = E(tr(YY")) = (35)
a(d+1,8) +exp(82/2)b(d +1,8) 5
da(d=1.0) texp(2bd—1,0)) "

(36)

Specifically ford=2, 8§ = 1
E(||Y|3) ~3.07tr(%) (37)

B Equation for gradients when applying function on
eigenvalues

If we have the square symmetric matrix B with eigendecomposition B = V7 DV and define
A = G(B) =V'diag(g(D1.1),8(D22), - g(Daa))V where g is a differentiable function g :
R — R. Then the gradient of a function L can be computed with respect to B through the
following equation.

L aL

= _yT T
55 =V (V(3)VI oK(D,g))V 38)
where
— 5 D #Dj;
K(Dag)i,j: Diai_Dj,j ) 7& JsJ (39)

¢ (D;;) otherwise

and o is a elementwise multiplication. This expression is similar to the expressions in
[16], except it handles the case when different eigenvalues are equal as well.

JdL dL . . . .
Note that =— and =— needs to be symmetric matrices since A and B are symmetric.

JdA JoB

B.1 Proof
B.1.1 Reduce proof to diagonal matrices

given a matrix B = V' DV pick the constant V = V, note V is a variable dependent on B while
V is constant.

Define C =VAVT = VICV=AandE=VBVT — VTEV =B

First

aL d d A 8L A A aL A
Frov Y ) Vi,MW(VT)n.j = (VﬂVT)i,j (40)
ij mn

The same holds for any multiplication of constant matrices.
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Such as

oL 9L,
aB”y=(VT§EV%J (41)

Since C and E are diagonal this further simplifies our proof.

B.1.2 Differentiation of diagonal elements

We will use the single entry matrix J*/ in following sections. The dimension of this matrix is
implicit based on context. -
iy =Li=mAj=n) (42)

where 1 is the indicator function.
If E is diagonal then F = E 4 J"'€ is trivially diagonal as well, therefore

G(E)—G(F)

lim - =J"g (E;;)Vi (43)
Since C = G(E) we get
aC -
o =g (E) @
ii

B.1.3 Differentiation of non-diagonal elements

Let’s consider how g(E) changes when we change the element of row i and column j. Since
E is diagonal this will only affect the i:th and j:th eigenvalues and eigenvectors. Without loss
of generality we can analyze the case when we change the non-diagonal elements of a 2 x 2
matrix.

0
E=|" 4
k y} (45)

First we analyze the case when x # y

We can find the eigenvalues of E + &(J'2 +J>!) by solving |E +&(J'? +J>!) — 41| =0
for A

The solution of this is

2 2
x+y xX—y xX+y |x—y] € 3
= T4 + €2 = + + + — 4
A 2 < 2 ) € 2 < 2 |x—y| Ole’) (46)

The first step can be done by completing the square and the second step is the first terms
of the maclaurin series.
Assume x >y then solve for eigenvectors to get

T x+y  x—yl e 3 T e’ 3
v (x— — - +0(e’),e)=v" (— +0(e’),¢e a7
(= = oy FOE)E =V (- 0 e)
Solving for v we get
€ 2
= |1, +0(g%) (48)
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The normalizing factor for v will be 1+ O(&?) so it will not influence the limit of the
derivative. If y > x the sign of the epsilon term would change.

Our new basis is now

__& 2
1 x_y+(’)(s )
xf"‘@(ez) 1
(1 +0E)P @
Putting it together
E+e(JV+J2h (50)
B )
1 ——— +0O(&?
= 1 2\\2 € Y ) G
(1+0(€2)* | = +0(e?) 1
[ x—y
[x+0(e?) 0
“I 0 yroe) (52)
[ ! £ 1o
X e ) =y (53)
——— +0O(?) 1
x—y

Where x is the standard matrix multiplication. Applying g on the diagonal terms gives
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GE +e(J"? +77h) (54)
X [ ——£ o)
= 202 | € Y (55)
(1+0(E)? | £ 4 o) I
LX—Y
g(x)+0(e?) 0
o R RPTORNGIED (0
1 £ +0(£?)
X e Y (57)
2
-——+0(&) 1
L X=Y i
1 ———+0(€?)
1 _
= T o | € Y (58)
(1+0(€2)* | = +0(e?) 1
LX—y i
[ swroe) 2% Lo
e . 9
I e)fy+0(s3) g +0(?)
L[ oy S o
_ - - (60)
(1+0(e2)? _eg(xi_i(y) +0(e%) 2(y) +O(?)
The first step comes from the fact that g is continous. The other two steps are matrix

multiplications.
From this it is obvious that

IG(E) _ ¢lx)— g0
JdE; x—=y

Note Ey» = E3 1 since E is symmetric.

("2 20 61)

Differentiation of non-diagonal when x=y We do the same procedure and solve the eigen-
values to be

A=x+te (62)
We solve for eigenvectors and get
vix—x—€,€ =0 (63)
which gives
1 1
[

Therefore

[V e

(12 V2] [xe 0O ][—1/\5 1/\6] (65)

B j[uﬁ 1/V2 {xo x—¢
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This is also trivially verified by matrix multiplication.

A( {: ﬂ) (66)
1 2
XEM+%QHOM)g@w&+a§> ©%)
L5 12

= (L‘Zﬁ’&) gjég)])w(sz) (70)

From this we see that

Jdg(E) 12, 2.1
o () an

When x =y

B.1.4 Wrapping up the proof

From the earlier argument this will now hold for all square diagonal matrices
By combining equations 71, 61 and 44 we get

L L 8Eii) ~8Eii) o s,
3E. \ac.)* Eii—Ej; o (72)
b b g (E;;) otherwise

By combining equations 40, 41 and 72 we can construct a proof for equation 38 for every
matrix B.

B.1.5 Final comments

In practice we use the gradient when the two eigenvalues are sufficiently close instead of
identical to avoid numerical instability.

C Loss

In this section we prove that under the assumption that ||x||» is bounded, our suggested loss
has bounded gradients, is convex for the convex set when all eigenvalues of A are larger than
0. and has bounded Hessians for the same set.

From now on we will only analyze the case 6 = 1 since that is the value we use for all
experiments.

Recall that our loss is parameterized as

A
ca(1)

p(x|v,A) = exp(—hi(||Ax—V||2)) (73)
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The negative log likelihood of this function, denoted £ is:

L(x,v,A) = —log(|A]) +log(ca(1)) + h(||[Ax = V[|2) 74

What remains is to show that —log(]A|) and A(||Ax — Vv||») have these properties with
respect to A and v. Note this is stronger than convex with respect to the two variables
individually. Since we need

S(X,}L\/l + (l —ﬂ,)VQJLAl + (1 —A)Az) < A,S(X, Vl,Al) + (1 —A)S(X, Vz,Az) (75)

C.1 Study of diagonal remapping function

This section is for future reference in the proof. Recall that the function we apply on

eigenvalues is
A ifA >0
A) = 76
4 {Qexp(l/e—l) otherwise (76)

1 ifA>0
"A) = 77
g {exp (A/8—1) otherwise 7n
0 ifA>6
g'A) =11 (78)

5 &xP (A/8—1) otherwise
g is continuous, has continous gradients and is convex since the second derivative is
positive almost everywhere and the gradient is continous where the second derivative is
undefined.
The derivative of g is always between 0 and 1. For this reason

0<(g(x)—g()/(x—y) <1 (79

For this reason when backpropagating through this function the gradient magnitude w.r.t.
Frobenius norm is guaranteed to decrease, since we do a componentwise multiplication with
values between O and 1. Therefore if the gradient with respect to A is bounded then the
gradient with respect to B will be bounded too. since the mapping from network output to B
preserves norms this means that the gradient with respect to the network output is bounded as
well.

C.2 Study of —log(|A])

Here we show that the term —log(|A|) has the properties we desire.

d —log(|A])
dA
The first step follows from Bishop Appendix C[6]. The second step comes from the fact

that A is symmetric.
Bounded gradients Let D and V be the eigenvalue decomposition of B.

—a 1T =gt (80)
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By using equation 38 we get

dlog(|A
128D, T (D) oK D)V 1)
d
= Z l/r(li) o r/(;\,i) (82)
i=0
d
<Y 1/0 (83)
i=0
d
= 5 (84)

Convexity We will show that the method is convex when all eigenvalues are larger than
0. i.e. when g is an identity mapping.

Since this part of the loss does not depend on V it is sufficient to prove that the loss is
convex w.r.t. A.

. . . . 2
For this part we will use a flattening function f : R4" — R9%4 guch that FWm =
Vdx(n—1)+m-

We will study —log(|f(a)|) and prove its convexity w.r.t. v. we will use f(a) = A to
simplify notation.

9% —log(|f(a)l)

Hd*(i*l)‘f’j,d*(k*l)“rl = af(a)ljaf(a)kl (85)
_ af(a)ili,j 86)
df(a)is
0A
=A'—A"l,; 87
=elA 'eel A e; (88)
:A;AU (89)

We will show that this matrix is postive definite. Shorthand f(x) = X note X needs to be
positive definite.
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d d
XTHX =Y Y Xapuet)smBanit)tmd(i—1)+Xd(i—1)+ ) (90)
nm*Oij*O
= Z Z XA A X o1
n,m=01i,j=0
d
=Y XA 'xA™, (92)
m=0
=tr(XA7'xA™h) (93)
=tr(U'DUUT'DU) (94)
=tr(DDU'U) (95)
d A
=) D=0 (96)
n=0

We define U and D by UT DU = XA~! such that U is ON and D is diagonal.
The last step relies on the fact that the eigenvalues of XA ™! are real. We will show this in
the following lemma.

Lemma: Eigenvalues for multiplication of real symmetric matrices. This lemma and
proof is very similar to the discussion here [1]. For two symmetric real matrices A and B
where A is also positive definite then the eigenvalues of AB are real.

Proof Since A is symmetric and real there exist an eigenvalue decomposition A = VI DV
Where D is diagonal, real with an inverse while V is ON. Then AB = VT DVB Then reparame-
terize B as B=VTXV. X will still be symmetric (X =VBVT =VBTVT =yyTxTyyT =xT)
Therefore AB = VT DXV, since a basis change does not change the eigenvalues AB will have
the same eigenvalues as DX.

Assume d and v is a pair of eigenvalues and eigenvectors of DX.

dv*D~'v=v*D7'DXv = v Xv=v'X*v=vX*D*D 'lv=d*v’'D v 97)
Step 1 is based on dv = DXv. Step 2 is based on D~'D = I. Note that D~! exists since A

is positive definite. Step 3 is based on X* = X7 = X since X is real and symmetric. Step 4 is
based on D~'D = I and D* = D since D is real. Step 5 is done by V' X*D* = (DXv)* since

D and therefore D~ is positive definite we know that v* D~y = ): |vi|>/D;; > 0. Since all

D;; > 0. If we divide the first and last expression by this number We get d = d* and therefore
d is real. This concludes the proof [].

We use the previous lemma and conclude that our function is convex when the remapping
is an identity mapping, i.e. for the set where all eigenvalues of A are larger than 6.

Bounded Hessians: If ||x||> = I then ||X||r = 1 and then || XA~ ||z < |IX||r||A7"||F =
A~ I

r(XAT XA =< (XA THT XA sp<xA7 R <A R < (98)

~ 02


Citation
Citation
{spe} 


24 STUDENT, SUPERVISOR, PROF: BMVC AUTHOR GUIDELINES

Where < .,. > is the Frobenius inner product.
We have now showed that this part of the loss has bounded gradients everywhere and that
it is convex with bounded Hessians where eigenvalues are larger than 6.

C.3 Study of i (||Ax — v||5)

In this section we show that 4(||Ax — v||,) has the desired properties. i.e. convex respect to A
and v in the region where all eigenvalues of A are larger than 8, bounded Hessians for the
same region and bounded gradients.

C.3.1 Properties in region ||[Ax — v|[» < 1

Here we will show that we have the desired properties in this region. If ||Ax — v||2 < 1 then
this term is

(Ax—v)T(Ax—v) xTATAx—-2vTAx+vTv

= 2 - > ©9)
We have
% = Vi~ (Ax)i = %{, = (v—Ax) (100)
aizjvj =I(i=j) (101)
av?azkal = 1(k=ix (102)
ai{_, =Xj(Ax=V); (103)
aAlajzajAkl =I(k=1i)x;x (104)

. . . . 2
We now know the Hessian, we will use a flattening function f : R¢ x R?*d — R+d

f(e,B); = {ci iti<d (105)

BU/dJ,«i)%d)Jrl otherwise

Where % indicates the remainder function.

f(e,B)"Hf(c,B) (106)

=Y I(i=j)c[ei+2 Y cil(k=i)xBe;+ Y. Bi Bl (k=i)x;x, (107)
(i,7) (i,k,0) ivj .k,

=cle+2¢"Bx+x" BT Bx (108)

(Bx+¢)[[3>0 (109)
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Therefore the function is convex in this region. By maximizing B and ¢ such that
|[f(B,¢)|]2 = 1 we find that the 2 norm of H is (||x||3+ 1). We can compute the Frobe-

nius norm from its definition and sum and realize that ||H||p = \/d «(x|3+|x|[3+1) =

Vd(||x||3 + 1) Where d is the dimensionality of x.
In this region the gradients are bounded by

Iy —Ax|3+ [1xlBllax—viE < /Ix]3 +1 (110)

C.3.2 Properties in region ||[Ax — V||, > 1

For this region the term turns into
J=/(Ax—Vv)T(Ax—v)—1/2
We will now compute gradients and Hessians.

oJ . (AX—V)i
Vi /(Ax— V)T (Ax—V) (b
. o <=V — (AX—V)i(Ax—V)))
o 1(i= j)/(Ax— V)T (Ax— V) N TR o
AV (Ax—Vv)T (Ax —v))3/2
(= j)(Ax— V)T (AX— V) — (Ax— V);(Ax— V);
N ((Ax—v)T(Ax—V))?2 (113)
i - v (Ax — V)X (AX — V)
92J _I(k* )xi1/(Ax — )T (Ax— V) VA= V)T (Ax—v) 4
8V,'8Ak71 - ((AX—V)T(AX—V))3/2 ( )
(k= 10)(Ax— V)T (Ax— V) — (AXx — V);(Ax — V),
- (Ax— V)T (Ax—v))? (>
aJ _ Xj(AX—V),'
0Aij  /(Ax—V)T(Ax— V) (116
. 1(i = k)\/(Ax— V)T (Ax— V) — ﬁ:;vii)(?(:; V)C)
9 Ay (Ax— V)T (Ax— v))32 (17
. I(i = k)(Ax — V)T (AX — V) — (AXx — V);(AX — V)i (118)
= X;X|

((Ax—v)T (Ax —v))?

Now we see that the norm of the gradient is y/||x|[3 + 1
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We use the flattening function again

f(e,B)'Hf(¢,B) = (119)
1

= (Ax— V)T (Ax—v)) Zcch (i = j)llAx = v|[3 (120)

—(AX—V),'(AX— )]) (121)

+2 Z ¢;By (I(i = k)x;(Ax — V)T(Ax —V)— (Ax—V)ix;(AX — V)i) (122)
ikl

+ Y BijBexixj(I(k =i)||Ax— V|5 — (Ax— v);(Ax = V))) (123)
ijik,l

_le||3 +2¢" Bx +x" B" Bx

((Ax—v)T(Ax—V)) (124)

(eT (Ax —v))? 4-2¢" (Ax — v)(Ax — v)TBx +x" BT (Ax — v)(Ax — v)Bx 195

B (Ax—Vv)T(Ax—V))2 (125)
lle+Bx|3  ((c+Bx)"(Ax—V))?

— — 126
lAx—IE~ [Ax—v)[ (120)
lle+Bx|]3 |le+Bx|3||[Ax—V|[3

= - (127)
I(Ax—v)|[3 [(Ax—v)|[3

=0 (128)

The second to last step is from Cauchys inequality. This concludes the proof that the
function has a positive semidefinite Hessian in both regions.

We can also notice that the Hessian has eigenvalues of magnitude less than (1+|[x|[3)/||Ax—
v|[3 < (1+]|x|3) The Frobenius norm of the Hessian is v/d — 1(1 +|[x||3)

Finally we notice that /2(x) is continous with continous gradients. Therefore A(||Ax — Vv||)
will also be continous with continous gradients w.r.t v and A.

If we consider two points (Aj, v;) and (A2, v2) and consider the function p(A) = A(||(AA; +
(1=2)A2)x— (Avi+ (1 —2A)v2)||2) Then this function will have a positive second derivative
almost everwhere and at the place where the second derviative is undefined the deriative is
continous. Therefore this function is convex. Therefore our function is convex for every line
segment. Therefore the function is convex for the convex set where all eigenvalues of A are
larger than 6.
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D Extra tables

The numbers we report for this section are based on running the same experiment 5 times
with different random seeds. The number we report is the mean of these runs. The value after
the + sign is the empirical standard deviation of these 5 runs.

Table 5: Ablation of different pretraining datasets for WFLW. The bottom two rows indicate
that using pretrained imagenet weights give significant improvements over random initializa-
tion. The top two lines indicate that pretraining on a face dataset gives a small improvement
in performance. All runs in this table use a resnet101 backbone with a convolution instead of
average pooling at the end. The loss used is our Huber loss with v parameterization.

Pretrain dataset  epochs NME NLL
300W-LP[40] 200 4.70£0.03 -344.6 +1.60
ImageNet 200 476 +£0.06 -355.4+3.30
ImageNet 50 491 £0.04 -3558+0.79
None 50 531£0.04 -3422+1.20

Table 6: Ablation for test time augmentation (TTA) for WFLW. Using probabilistic TTA
significantly improves performance compared to no TTA. All runs use resnet101 backbone
with convolution instead of average pooling at the end. The methods were trained for 200
epochs. We use our loss with the v parameterization.

Pretraining dataset TTA NME
300W-LP[40] v 458 £0.02
300W-LP[40] X 470+0.03
ImageNet v 4.62+£0.04
ImageNet X 4.76 £ 0.06

Table 7: Comparison when training for 200 epochs compared to 50 on WFLW. When training
for longer the estimated position performance continues to increase for longer than the NLL.
We use resnet101 backbone and our loss with v parameterization. Models are pretrained on
Imagenet.

Epochs NME NLL

200 476 £0.06 -355.4 £3.30
50 491 +£0.04 -355.8+£0.79
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Table 8: Ablation of fusion type for mpii. Performance difference is small and probably not
significant. Models trained for 50 epochs using resnet101 as backbone with our loss using a
V parameterization.

Fusion type ~ PCKh@0.5

probabilistic ~ 85.0 + 0.1
mean 84.8 £0.1

Table 9: Network architecture ablation for WFLW. ResNet18 performs worse than the other
two architectures. ResNet101 and ResNet50 has similar performance.

Network NME (}) NLL (})
ResNet101  4.91 +0.04 -355.8 £ 0.79

ResNet50  4.89 +£0.02 -357.2+£0.47
ResNetl8  5.01 £0.02 -351.0+£0.75

Table 10: Comparison average pooling at end versus using channelwise convolutions. Ex-
periment shows that using channelwise convolutions instead of average pooling significantly
improve performance. Models use resnet101 backbone, trained for 50 epochs using our loss
with v parameterization.

Average pooling at end NME NLL
X 491+0.04 -355.8+0.79
v 525+0.02 -336.5+0.40

E MLE of multiple multivariate Huber distribution
predictions

For many applications there will be multiple estimates of the target position. For example
one could have multiple views of a person and with our approach it would be possible to
generate a multivariate Huber distribution from each view, creating multiple estimates of each
landmark. Unfortunately, the Huber distribution is not closed under multiplication, unlike the
normal distributions. However, we have created an efficient method which is based on the
majorize/minimize method for quadratic functions. For the special case 6 = 0 this method
would turn into Weiszfeld’s algorithm [17].

We want to find the maximum likelihood point given n independent multi-variate Huber
distributions. Let each independent estimate of y be parameterized by (v;,A;) then

p(y) o< [ Jexp (—hs(|Aiy — vill)) (129)
i=1

and the optimal y is found from:

n n
argmax p(y) = argmin ) s ([|A;y — vi[|) = argmin }_ gi(y) (130)
y y i=1 y i=1

This optimization problem can be solved with a Majorize-Minimization (MM) procedure. If


Citation
Citation
{Kuhn} 1973


STUDENT, SUPERVISOR, PROF: BMVC AUTHOR GUIDELINES 29

y(t ) is the current estimate for the optimal y then a tight quadratic majorizer for each g;(y) is

o 1Azy = vil|*/2 if |4y —vil| < &
; Yy — 131
qi(y [ y") siay-ve , 3l Ay — vy — 82 — (131)
2[4y O —vi| 2
It is then simple to majorize Y7 ; g;(y) with
qly |y Z (y|y? (132)

By iteratively solving y**!) = argminy g(y | y*)), we converge to the desired maximum
likelihood estimate solution. Since g(y|y")) is a quadratic function with respect to y finding
the minima for each step is easy.

G Visualizations of L, multivariate Huber pdf

This section presents visualizations of the L, multivariate Huber distribution to aid understand-
ing the effect of the parameters on the shape, spread and effective support of the distribution.
The A parameter plays a similar role in the shape of the distribution as in a Gaussian distri-
bution. The § parameter controls the tail behaviour of the distribution and its spread given
the orientation defined by A. Crucially, the parameters 6 and A can be independently set to
change the spread of the distribution. This means that even when § is kept fixed one can
still adapt the distribution’s support via A to down-weight outliers in our loss. A less drastic
change in A is needed for our Huber distribution, given a reasonable value of J, to adapt to
outliers than for a Gaussian distribution.

In the following figures it is assumed each distributions shown has zero mean vector. Each
plot shows the iso-probability contours of the distribution marking the .005,.05,.2,.35,.5,.65,
.8,.95 and .99 percentiles. The shading in each ring is proportional to log of the mean
probability of the distribution in that region. The scaling - applied to the spatial and shading
components - is constant across the plots within a figure.
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Figure 4: Comparison of L, Huber distributions and a bivariate Gaussian distribution
all with the same second-order moment matrix. Leftmost plot: The bivariate normal
distribution whose covariance matrix, X, by definition equals E[X?]. Other plots: Each plot
shows a L, multivariate Huber distribution whose second order moment matrix equals that of
the distribution shown in the leftmost plot. For a Huber distribution E[X?] = ot(§)A~!. The
parameters defining the shown Huber distributions are given under the plot. As § increases:
1) The parameter matrix A~! changes, entries increase in magnitude, to keep E[X?] fixed and
the spread of distribution decreases. 2) The distribution increasingly resembles a Gaussian
distribution. 3) Less of the probability mass of the pdf is contained in the tails.
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Figure 5: Comparison of L, Huber distributions with the same A but different 6 param-
eter. (a) The bivariate normal distribution with covariance matrix X. (b-e) Each plot shows a
L, multivariate Huber distribution with the same A parameter but different 5. As 6 increases:
1) The spread of distribution decreases. 2) The distribution increasingly resembles a Gaussian
distribution. 3) Less of the probability mass of the pdf is contained in the tails.
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Figure 6: Comparison of L, Huber distributions with the same 6§ = 1 parameter but
different A. By decreasing the magnitude of values in A :(‘; j)” by the same factor one
can increase the spread of the distribution.



