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1 Appearance branch and multimodal fusion

In Section 3.3 in the main paper, we discuss the different appearance models we make use of,
as well as the multimodal fusion methods employed to combine the appearance and layout
(STLT) features.

1.1 Appearance models

As an appearance model we deem a neural network, typically a convolutional neural network
(CNN), that takes as input a sequence of video frames V = (v0,v1,v2, ...,vT−1), where T
is the number of video frames we sample from the video (Section 3.3, main paper). In
certain cases, i.e., with EF, CAF and CACNF we sample a different number of appearance-
and layout-based frames. Each vi ∈ RC×H×W , where C is the number of channels (in our
case C = 3, as we deal with RGB frames), and H and W are the video height and width,
while V ∈ RC×T×H×W . Depending on the corresponding appearance model, we sample a
different set of video frames, as well as pre-process these frames differently during training
and evaluation.

1.1.1 2D Resnet152

With the 2D Resnet152 [6] (abbreviated as R2D-152), for each sampled spatial layout frame
we sample its corresponding RGB frame, i.e., the frame from where we take the spatial
layout (bounding boxes and object categories). As the R2D-152 model was pre-trained on
ImageNet [3], we follow the ImageNet way of pre-processing. To be specific, we firstly
rescale each frame so that its shorter side length is 256, and then take a center crop of
size 224 × 224. Each video frame is subsequently per-channel normalized as per standard
practice [6]. We take the output of the R2D-152’s penultimate layer, i.e., the layer before the
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classifier, yielding a frame embedding of size 2048. We concatenate the embeddings of each
frame to form a sequence, yielding a video appearance embedding Â ∈ RT×2048.

1.1.2 2D Resnet50 backbone from Faster R-CNN

We extract the Resnet50 backbone from a Faster R-CNN [15] trained on the task of COCO
[11] object detection. In the main paper we abbreviate this model as R2D-50. With the R2D-
50 appearance model, to obtain video appearance information, besides the video frames
themselves, we additionally utilize the bounding boxes, i.e., the spatial layouts. Given a
video frame and its object detections, we firstly pre-process the video frame with the standard
Faster R-CNN pre-processing [15], and obtain RoI Align [7] features from each region of
interest (as defined by the object detections). Each region of interest feature is of size 256×
7×7, which we average-pool to 256×3×3, and then flatten to a vector of size 2304.

1.1.3 3D Resnet50

While the input to R2D-152 and R2D-50 is individual frames, with no temporal connectivity
between them, with the 3D Resnet50 (abbreviated as R3D or R3D-50 in the main paper),
we exploit the temporal connectivity of the frames. To that end, we use a 3D Resnet50
[9], pre-trained on Kinetics-700 [2], Moments in Time [14] and Stair Actions [23]. The
input to R3D is a frame sequence V ∈ RC×T×H×W . During training, we sample a random
contiguous sequence of frames, while during evaluation, we sample a contiguous sequence
of frames from the center of the video. Note that the sampling of frames is identical to
[13] for accurate state-of-the-art comparisons (Section 4.2, main paper). We first rescale
each frame so that the shorter side is of size 128. Then, during training, we take a random
crop of 112 × 112 across all frames, and during inference we take a center crop of 112 ×
112 across all frames (see Section 3 for more details). Finally, we forward-propagate the
pre-processed video frames through R3D, yielding a video embedding Â ∈R2048×Td×Hd×Wd ,
where d indicates downscaled, and 2048 is the R3D penultimate layer hidden size.

1.1.4 3D Resnet50 Transformer

With the 3D Resnet50 Transformer appearance model (R3D-Transformer), we reuse R3D,
as defined and explained in Section 1.1.3, and we add a transformer model [19] on top.
Namely, given the output video embedding from R3D, we firstly use an additional Conv3D
layer with a kernel size 1× 1× 1 to project it in the desired hidden dimensionality Â ∈
RZ×Td×Hd×Wd , where Z is the hidden size. We flatten the embedding across the temporal
and spatial dimension RZ×Td∗Hd∗Wd , essentially making it a sequence, and append a special
class embedding. We sum the R3D embedding with additional positional embeddings to
inject positional information. We forward-propagate the obtained embeddings through the
transformer, yielding a sequence of hidden states as output.

1.2 Multimodal fusion
With the multimodal fusion methods, our goal is to feed the appearance information (ob-
tained using the models from Section 1.1) in the Spatial-Temporal Layout Transformer
(STLT). As each appearance model yields a unique video embedding Â, we devise differ-
ent approaches to inject the video embedding in STLT.
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1.2.1 Per-frame fusion (PFF)

With the per-frame fusion (PFF) method (Figure 2 (a), main paper), our goal is to inject the
R2D-152 frame embeddings (see Section 1.1.1) in STLT. As we have a separate embedding
for each frame, we feed the embeddings directly in STLT’s Temporal Transformer module.
Note that the output of the Spatial Transformer module for a single frame ŝi is summed with a
positional embedding ŝi + p̂i, and is provided as input to the Temporal Transformer module.
Here, with PFF, we sum the R2D-152 frame embedding â f

i together with ŝi and p̂i, apply
layer-normalization [1] and dropout [17]: t̂i = Dropout(LayerNorm(ŝi + p̂i + â f

i )). Then,
as in STLT, we provide t̂i as input to the Temporal Transformer. The remaining part of the
model follows STLT.

1.2.2 Per-box fusion (PBF)

The goal with the per-box fusion (PBF) method (Figure 2 (b), main paper) is to inject appear-
ance information at a low, object-specific level. To that end, we utilize the appearance video
features obtained from R2D-50 (see Section 1.1.2). With STLT, given a frame object o j, we
obtain its embedding as ô j = Dropout(LayerNorm(ĉ j + l̂ j)). With PBF, the embedding for a
single object region in a single video frame is denoted as âr

j, which we fuse with the object
embedding as ô j = Dropout(LayerNorm(ĉ j + l̂ j + âr

j)). Then, same as STLT, we provide the
object embeddings f̂i for a single frame fi to the Spatial Transformer.

1.2.3 Early fusion (EF)

With the early fusion (EF) method (Figure 2 (c), main paper), we inject the R3D video
appearance features into STLT. First, we obtain Â ∈ R2048×Td×Hd×Wd from R3D, perform
average pooling across both the temporal (Td) and the spatial dimensions (Hd and Wd), and
project the embedding in the corresponding hidden size using a fully-connected layer. Then,
we prepend the video appearance embedding Â as first element in the sequence of layout-
based frame representations obtained from the Spatial Transformer. By doing so, each of the
layout-based frame representations can attend on the R3D video embedding.

1.2.4 Video Action Transformer Fusion (VATF)

We take inspiration from the Video Action Transformer [4], and attempt to conceptually
adapt it to perform multimodal fusion. We abbreviate this fusion method as VATF, and
display it in Figure 2 (d) – main paper. To achieve such fusion, given the R3D appear-
ance embedding Â, we firstly perform average pooling across the time dimension, such that
Â ∈ R2048×Hd×Wd . Then, given a set of bounding boxes corresponding to the temporally
central frame, we perform RoI Align and obtain region of interest embeddings. Finally,
the non-temporally pooled R3D video embedding represents the memory, while the regional
embeddings represent the query as input to a transformer model. We select the output hidden
state corresponding to the bounding box of the whole frame ([0,0,w,h]) and add a classifier
on top. For details refer to Video Action Transformer [4].
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1.2.5 Late concatenation fusion (LCF)

Late concatenation fusion (LCF) is always used a strong baseline for multimodal fusion. We
visualize the method in Figure 2 (e) – main paper. It follows the general paradigm for late
fusion, where we obtain the STLT and R3D outputs, linearly project them with separate fully-
connected layers so that both embeddings have the same dimensionality, and concatenate the
representations before the classifier.

1.2.6 Cross-attention fusion (CAF)

The main building block of Cross-Attention Fusion, abbreviated as CAF, (Figure 2 (c), main
paper) is the cross-attention module. We draw inspiration from successful methods for fusion
of text and image embeddings [18], mainly used for visual question answering, image-text
matching, etc. To be specific, we get STLT’s and R3D-Transformer’s hidden states, Ĥ ∈
RZ×T and Â ∈ RZ×Td∗Hd∗Wd respectively, where Z is the hidden size. T does not need to be
equal to Td ∗Hd ∗Wd , i.e., we can increase or decrease the number of sampled layout-based
or appearance-based frames. However, they both have to have the same hidden size Z. Then,
the module consists of cross-attention, self-attention, and feed-forward module. The cross-
attention is applied on each branch separately, such that for the layout branch, the multi-head
attention queries are Ĥ, while the keys and values are Â. When the cross-attention is applied
on the appearance branch, the queries are Â, while the keys and values are Ĥ. The remaining
modules (self-attention, feed-forward module) closely follow the standard transformer block
(refer to [19] for details). Finally, we select the output hidden state corresponding to class
from both the layout ĥcafclass and the appearance âcafclass branch, concatenate them, and add a
classifier on top.

1.2.7 Cross-attention CentralNet fusion (CACNF)

Our motivation for performing multimodal fusion of the layout and appearance branch repre-
sentations is their complementarity. But even though CAF follows state-of-the-art practices
for fusion of image and text embeddings, we observe that CAF performance is compara-
ble to LCF (Table 1, main paper), due to the layout and appearance branch not preserving
their individual capabilities (Figure 3, main paper). To overcome this issue, while keeping
the fusion module intact, we use a multimodal fusion method proven to work well across
different tasks – CentralNet [20]. To that end, CAF remains as is, however, before forward-
propagating Ĥ and Â through CAF, we select the hidden states corresponding to class,
namely ĥclass and âclass, and add classifiers (implemented as linear layers) on top of each
of them.

During training, we minimize three cross-entropy losses between the model predictions
and the target action: (1) STLT loss, (2) R3D-Transformer loss, (3) CAF loss.

During inference, we average the logits of the three classifiers and take the action with
the maximal probability as the model’s prediction.

2 Baseline layout-based models
In Section 4.1 in the main paper, we compare STLT performance on the Something-Else
compositional dataset and the Something-Something V2 dataset against (i) GNN-NL: A
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baseline model [13] utilizing a graph neural network [10] for spatial reasoning and a non-
local neural network [21] for temporal reasoning. Essentially, our implementation of STIN
[13], where we train the model within our setup (optimizer, learning rate scheduler, training
epochs, etc.). Refer to [13] for details; (ii) S&TLT: An STLT variant, where the spatial and
temporal reasoning are performed jointly.

2.1 S&TLT

With the Spatial & Temporal Layout Transformer, abbreviated as S&TLT, instead of having
decoupled spatial and temporal reasoning over the spatio-temporal layouts, we perform it
jointly. Similar to STLT, we obtain the category embedding ĉ j and the location in the frame
embedding l̂ j with two separate fully-connected layers. However, in this case, for each frame
object o j, we additionally obtain its frame position index, e.g., if the object is from the first
frame the index would be 0, while if it is from the last frame, it would be n−1, where n is
the number of sampled video frames. Therefore, for a single object, we obtain its embed-
ding as ô j = Dropout(LayerNorm(ĉ j + l̂ j + p̂ j)), where an additional fully-connected layer
yields the p̂ j embedding. Finally, we append a special class object embedding ôclass
at the sequence end, and forward-propagate the sequence of object embeddings through a
transformer model. We control the attention pattern using an attention mask, such that for
objects spanning a single frame we perform bidirectional attention, while we perform causal
attention across the video.

3 Experimental setup

For all layout-based models we randomly sample 16 frames represented as spatio-temporal
layouts. For models using an R3D appearance model, we uniformly sample 32 frames from
the video, and then resize the frames so that the size of the smaller side is 128. During
training, we randomly crop the frames to 112 × 112 and apply colour jittering. During
inference, we take a center crop of size 112 × 112.

We train all models for 20 epochs with AdamW [12], with a peak learning rate of 5e−5,
linearly warmed-up for the first 10% of the training, and decreased to 0.0 until the end. We
apply weight decay of 1e−3, gradient clipping when the norm exceeds 5.0, and dropout [17]
of 0.1 in the attention and feed-forward modules (the bias term, the positional and class
embeddings are excluded from the weight decay). We use 4 and 8 multi-head self-attention
layers for the spatial and temporal transformer in STLT respectively, and 4 cross- and self-
attention in CAF and CACNF. The hidden size for all modules is 768.

On the Something-Something and Something-Else dataset, only two object categories
are registered in STLT – “hand” or “object”. On the Action Genome dataset, we register
all 36 object categories present in the dataset (also predicted by the trained object detector)
– “hair”, “book”, “medicine”, “vacuum”, “food”, “groceries”, “floor”, “mirror”, “cabinet”,
“doorway”, “notebook”, “picture”, “phone”, “couch”, “sandwich”, “bottle”, “towel”, “box”,
“blanket”, “television”, “bag”, “refrigerator”, “table”, “light”, “broom”, “shoe”, “doorknob”,
“bed”, “window”, “shelf”, “door”, “pillow”, “laptop”, “dish”, “clothes” and “person”.

All models trained on the Something-Something and the Something-Else datasets mini-
mize the cross-entropy loss, while all models trained on the Action Genome dataset minimize
the per-class binary cross-entropy loss during training.

Citation
Citation
{Materzynska, Xiao, Herzig, Xu, Wang, and Darrell} 2020

Citation
Citation
{Kipf and Welling} 2017

Citation
Citation
{Wang, Girshick, Gupta, and He} 2018

Citation
Citation
{Materzynska, Xiao, Herzig, Xu, Wang, and Darrell} 2020

Citation
Citation
{Materzynska, Xiao, Herzig, Xu, Wang, and Darrell} 2020

Citation
Citation
{Loshchilov and Hutter} 2019

Citation
Citation
{Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov} 2014



6 SUPPLEMENTARY MATERIAL: REVISITING SPATIO-TEMPORAL LAYOUTS

4 Datasets details and statistics
In Table 1, for each dataset used we show the classification problem type, the number of
action classes, as well as the number of training and validation videos.

Dataset Classification problem type Number of actions Number of training videos Number of validation videos

Something-Else: Compositional dataset [13] Multi-class classification 174 54,919 57,876

Something-Else: few-shot pre-training dataset [13] Multi-class classification 88 112,397 12,467
Something-Else: 5-shot dataset [13] Multi-class classification 86 430 49,822

Something-Else: 10-shot dataset [13] Multi-class classification 86 860 43,954

Something-Something dataset [5] Multi-class classification 174 168,913 24,777

Action Genome dataset [8] Multi-class and multi-label classification 157 7,787 1,814

Table 1: Statistics of each of the datasets used in the paper.

Next, we provide the remaining details for each of the datasets as well as an explanation
of the setup in which the experiments are conducted.

4.1 Something-Else: Compositional dataset
In the Something-Else [13] compositional split, the videos are divided in a training and val-
idation set based on the objects present in each video. Firstly, all frequent object categories
are found, i.e., object categories that appear more than 100 times in the videos, and those
videos are kept. Secondly, the videos that contain the frequent object categories are split in
two disjoint sets. In this setup, the models encounter the same action classes during train-
ing and evaluation, however, the objects present in the videos are non-overlapping between
training and evaluation, i.e., the models encounter strictly novel objects during evaluation.

4.2 Something-Else: Few-shot dataset
In the few-shot version of the Something-Else dataset, the goal is validate to what extent the
models can learn to generalize in a low-data regime. To that end, the videos are split in two
sets: (1) A base set – used for pre-training the models, containing 88 action classes out of the
174 in total; (2) A few-shot set – used for fine-tuning the models, containing the remaining 86
actions classes. The few-shot split has two variants, a 5-shot and 10-shot split, where in each
there are 5 and 10 videos for each action class respectively. Besides the need to generalize
from few samples, in the few-shot split the constraint of compositionality still holds, i.e., the
objects that appear during training do not overlap with the ones during validation.

For the experiments on the Something-Else few-shot dataset, we follow the exact setup
of [13] for proper comparisons w.r.t. state-of-the-art (Table 2, main paper) – we pre-train the
models on the base set of videos, then freeze the model weights except the classifier which
is trained on the few-shot split.

5 Action Genome: Object detector training
The Action Genome dataset [8], built on top of Charades [16], provides bounding box and
object category annotations for a random subset of frames where the action occurs in each
video. Besides utilizing these in the “oracle” experiments, we train a Faster R-CNN [15]
object detector to create an “object predictions” (obj. predictions) setting. For training the
object detector we use the standard train/validation Charades split. Using Detectron2 [22],
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we train a Faster R-CNN with a Resnet101 [6] backbone, which was pre-trained on the
COCO [11] dataset. We train the model with stochastic gradient descent (SGD) for 5 epochs,
with a learning rate of 1e− 5. During training, we apply random horizontal flipping of the
frames. We obtain an average precision (AP) of 11.3 on the Action Genome validation set.
When generating the spatio-temporal layouts, we keep all object detections with a probability
of at least 0.5.

6 Additional qualitative evaluation

STLT R3D STLT R3D STLT CACNF

Throwing [something] against [something]

Holding [something] next to [something]

Pretending to put [something] on a surface

Folding [something]

Tearing [something] into two pieces

Moving away from [something] with your camera

Showing that [something] is inside [something]

Picking [something] up

Moving [something] towards the camera

Putting [something] on a surface

Dropping [something] into [something]Trying to bend [something unbendable] so nothing happens

R3D 

Figure 1: Qualitative evaluation on the Something-Else compositional dataset. Left: R3D
mispredicts, STLT predicts correctly. Middle: STLT mispredicts, R3D predicts correctly.
Right: STLT and R3D mispredict, CACNF predicts correctly. Above each set of video
frames is the ground truth action class.

We provide additional qualitative evaluation on the Something-Else compositional split.
We follow the same setup as in Figure 4 in the main paper, where we are interested in visually
inspecting three error types: (i) R3D predicts wrong, STLT predicts correct action; (ii) STLT
predicts wrong, R3D predicts correct action; (iii) STLT and R3D predict wrong, CACNF
predicts correct action. We show the results in Figure 1.

Lastly, we visually inspect how STLT copes with background clutter, and plot two error
types: (i) I3D predicts the correct action with probability less than 0.5, STLT predicts the
correct action with probability higher than 0.5; (ii) STLT predicts the correct action with
probability less than 0.5, I3D predicts the correct action with probability higher than 0.5.
Note that in both scenarios, we show the frames where the action of interest occurred, i.e.,
the action for which there is a mismatch between the models’ predictions. Note that there
may be other actions occurring simultaneously, or in other parts of the video. The results are
shown in Figure 2.
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STLT I3D STLT

Opening/Closing a closet/cabinet Holding a phone/camera

I3D

Putting something on a shelf

Holding a blanket

Someone is running somewhere

Tidying up with a broom

Figure 2: Qualitative evaluation on the Action Genome. Left: I3D mispredicts, STLT pre-
dicts correctly. Right: STLT mispredicts, I3D predicts correctly. Above each set of 3 video
frames is the ground truth action class.
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