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A Implementation Details
The following sections include a detailed description of our model architecture, data prepro-
cessing steps and evaluation procedure.
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Figure 1: Model Architecture for Encoder H. With a single image as input, the global
latent code z is generated from a ResNet-18[5]. The local image feature is extracted from
the position of 2D location p on the concatenated feature maps from 4 different encoder
stages. Symbol ⊕ represents additive operation.
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Figure 2: Model Architecture for Local Context Mixer J and Occupancy Decoder D.
Using the local feature and a 2D location p as input, we first generate a fused local context
feature through Local Context Mixer J . The Occupancy DecoderD uses Conditional Batch-
Normalization (CBN) to condition the fused local feature on global latent code z and the
scale calibration factor s, and predicts occupancy probabilities for M points along the ray.

Encoder H. The encoder is built on a ResNet-18 architecture[5] with an additional upsam-
pling step to generate feature maps. The encoder is initialised with pretrained weights on
ImageNet dataset[4] except the last fully connected layer. The global feature z is obtained
from a fully connected layer with Dglobal dimensions. The outputs from the 2nd , 4th and 6th

ResNet Blocks, are upsampled to 112× 112 using bilinear interpolation and concatenated,
togenether with the the 112×112 feature maps output from the ‘Conv64’ layer, to form 512
dimensional feature maps. The dimension is changed to Dlocal with a fully connected layer.
The local feature is then extracted from the corresponding position of 2D point p on the
image. In practice, we choose Dglobal = Dlocal = 256.

Local Context Mixer J . As shown in Fig. 2, the Local Context Mixer J takes a batch
of T local features with Dlocal dimensions and the corresponding 2D points as input. The
local features and points are first concatenated and projected to 256 dimensions with a fully-
connected layer. It then passes through 3 residual MLPs with ReLU activation before each
fully-connected layer. The output local feature has T batches with 256 dimensions.

Occupancy Decoder D. The Occupancy Decoder D follows the architecture of occupancy
network[6], with different inputs and output dimensions. The inputs are the global feature
(z,s) and the local feature output from J . The local feature first passes through 5 pre-
activation ResNet-blocks. Each ResNet-block consist of 2 sub-blocks, where each sub-block
applies Conditional Batch-Normalization (CBN) to the local feature followed by a ReLU
activation function and a fully-connected layer. The output from the ResNet-block is added
to the input local feature. After the 5 ResNet-blocks, the output passes through a last CBN
layer and ReLU activation and a final fully-connected layer which produces the M dimen-
sional output, representing occupancy probability estimations for M points along the ray.

A.1 Data Preprocessing
We use the image renderings and train/test split of ShapeNet[1] as in 3D-R2N2[3]. Following
ONet[6], the training set is subdivided into a training set and a validation set.

In order to generate ground truth occupancies for rays from each view, we first create
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Figure 3: Additional Qualitative Reconstruction Results on ShapeNet.

watertight meshes using the code provided by [8]. With camera parameters for 3D-R2N2
image renderings, we place the camera at corresponding location of each view, and generate
5000 random rays passing through the image. We sample equally spaced points on each ray
between defined distances dmin and dmax. In practice, we choose dmin = 0.63 and dmax = 2.16,
which guarantee all meshes are within this range.

A.2 Evaluation
To make a fair comparison with previous approaches, we use normalised ground truth points
and point clouds produced by ONet[6] for evaluation. With the scale calibration factor, our
predicted mesh has the same scale as the raw unnormalised ShapeNet mesh. In order to
make the predicted mesh in a consistent scale as the normalised ground truth, we use the
scale factor between the raw ShapeNet mesh and the normalised ShapeNet mesh to scale our
prediction before evaluation. The threshold parameter for converting occupancy probabilities
into binary occupancy values is set to 0.2 during inference.

B Additional Experimental Results

B.1 Additional Qualitative Results on ShapeNet
Additional qualitative results on ShapeNet are shown in Fig. 3 and Fig. 4, where Fig. 3 is the
standard reconstruction task results on categories seen during training, and Fig. 4 is the test
results after trained on 3 different categories.

B.2 Qualitative Results on Online Products and Pix3D Datasets
With the model trained on 13 categories of synthesis ShapeNet[1] images, we made further
tests on 2 additional datasets with real world images to validate the generalisation ability of
the model.
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Figure 4: Additional Qualitative Reconstruction Results on Unseen Categories.

Online Products Dataset. We use the chair category in Online Products dataset[7]. As the
training data has white background, We first feed the image into DeepLabV3[2] to generate
a segmentation mask and changed the color of the image outside the mask to white. As there
is no camera parameters available, the reconstruction shown in Fig. 5 is of correct proportion
only.

Pix3D Dataset. Similarly, we test our model on chair category of Pix3D dataset[9], with the
ground truth segmentation mask provided. Some results are shown in Fig. 6.
B.3 Limitations
As shown in Fig. 7, for certain objects in unseen categories, the 3D object reconstructions
are much more accurate in the image view than other views, as our model is able to predict
shape for visible parts from image features but lacks of shape priors for invisible parts on
those unseen categories.
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Figure 5: Qualitative Reconstruction Results on Online Products dataset.
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Figure 6: Qualitative Reconstruction Results on Pix3D dataset.
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Figure 7: A Failure Case for Novel Categories.
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