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In this document, we provide additional details, discussions, and experiments to support
the original paper. Below is a summary of the contents:

• Derivation of the orthogonal point-to-ellipsoid distance for completeness;

• Derivation of the expectation of the complete-data negative log-likelihood function (Q
function) of the EM algorithm;

• Derivation of the geometric parameters of an ellipsoid;

• Parameter settings of other compared methods in the paper;

• Application of the proposed method for shape approximation;

• Generalization of the proposed method for other quadric fitting.

1 Derivation of the Orthogonal Point-to-Ellipsoid Distance
We present a simple derivation here of the orthogonal distance from a point to an ellipsoid
to show its computational complexity. Let the equation of the ellipsoid E(x,y,z) with center
(xo,yo,zo) be

A(x− xo)
2 +B(y− yo)

2 +C(z− zo)
2 +D(x− xo)(y− yo)+E(x− xo)(z− zo)+F(y− yo)(z− zo)−1 = 0. (1)

Given a point x = (x,y,z) not lying on the ellipsoid and suppose its closet point on the
ellipsoid is xt = (xt ,yt ,zt), then we have

E(xt ,yt ,zt) = 0. (2)
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Since the tangent at xt is orthogonal to the vector x−xt , thereby

(x− xt)∗
∂

∂y
E(xt ,yt ,zt) = (y− yt)∗

∂

∂x
E(xt ,yt ,zt). (3)

Let ∆x = xt − xo, ∆y = yt − yo, and ∆z = zt − zo, from Eq. 1, we have

A∆
2x+B∆

2y+C∆
2z+D∆x∆y+E∆x∆z+F∆y∆z−1 = 0.

Then we get

∆y =
−(D∆x+F∆z)+η1

2B
,∆z =

−(E∆x+F∆y)+η2

2C
, (4)

where

η2
1 = (D∆x+F∆z)2−4B(A∆2x+C∆2z+E∆x∆z−1), (5)

η2
2 = (E∆x+F∆y)2−4C(A∆2x+B∆2z+D∆x∆y−1). (6)

From Eq. 3 we get

(x− x0−∆x)(2B∆y+D∆x+F∆z) = (y− y0−∆y) · (2A∆x+D∆y+E∆z). (7)

Substituting ∆y into the above equation and squaring the result leads to the following equa-
tion:

4B2(x− x0−∆x)2
η

2
1 = (2B(y− y0)+∆x+F∆z−η1)

2 · (2A∆x+D∆y+E∆z)2. (8)

Combining ∆z in Eq. 4 and η2
1 in Eq. 5, we know that the above equation is sixth order in

terms of ∆x, thereby, we require solving a sixth order equation to attain (∆x,∆y,∆z), and then
the orthogonal distance d is computed by

d =
√
(x− xo−∆x)2 +(y− yo−∆y)2 +(z− zo−∆z)2.

From the above derivation, we know that it is difficult to directly take the exact orthogonal
distance into the geometric fitting.

2 Q Function
In the M-step of EM framework, the "new" parameter Ω is updated by minimizing the ex-
pectation of the complete-data negative log-likelihood function (Q function), namely

Q(Ω,Ωold) = EY[− log p(Y,X|Ω)|X,Ωold ]

=−ΣY log p(Y,X|Ω)p(Y|X,Ωold)

=−Σ
N
i=1Σ

M+1
m=1 pold(ym|xn) log(pnew(ym)pnew(xi|ym))

=
1

2σ2 Σ
N
i=1Σ

M
m=1 pold(ym|xi,Ω)‖xi− (Aym + t)‖2

+
Npd

2
logσ

2− log(w)No− log(1−w)Np,

(9)

where p(x,ym+1) =
w
V represents the point x sampled from the uniform distribution 1

V , No =

∑
N
i=1 pold(ym+1|xi,Ω), and Np = ∑

N
i=1 ∑

M
m=1 pold(ym|xn,Ω). Note that we have ignored the

independent term of Ω in Eq. 9.
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3 Ellipsoid Parameter
To get ellipsoid parameters, we reformulate the second-order polynomial of an ellipsoid as
follows.

Definition 1 An ellipsoid surface e ∈ Rd in center form can be represented by

e = {x ∈ Rd |(x− ce)
T B−1(x− ce) = 1}, (10)

where ce ∈ Rd is the ellipsoid center and B ∈ Sd
++ is the shape matrix.

Since the unit sphere (attained in paper) with center cs is (ym− cs)
T (ym− cs) = 1, then the

fitted ellipsoid is

[x− (t̂+ Âcs)]
T (ÂÂT )−1[x− (t̂+ Âcs)] = 1, (11)

thereby B̂ = ÂÂT and ĉe = t̂+ Âcs are the shape matrix and the center of the result ellipsoid.
By eigenvalue decomposition, we have B̂ = QT ΛQ, where Q3×3 and Λ3×3 are the rotation
and the diagonal matrix, respectively, with eigenvalues equal to λ1, λ2, and λ3. Finally, the
nine geometric parameters of an ellipsoid are

ĉe = t̂+ Âcs, â =
√

λ1, b̂ =
√

λ2, ĉ =
√

λ3,

α̂ = atan2
−Q31√

(Q11 +Q21)2
, β̂ = atan2

Q21

Q11
, γ̂ = atan2

Q32

Q33
.

(12)

4 Implementation Details
We manually tune the hyper-parameters of compared methods to achieve their best perfor-
mance, as listed below:

• MQF: We reimplement MQF according to the pseudo code of [1], as faithfully as
possible. In reimplementation, we adopt the local plane fitting for normal estima-
tion, where nine closet neighborhood points are sampled. To accommodate noise and
outlier interference, the weight value (hyper-parameter) is set as 0.3, by which the
gradient-normal alignment effect is depressed.

• RIX: The maximal step size in the iteration of RIX is tuned from 50 to 100, whereas
the minimal one is set as 0.001. The scale factor of RIX is tuned for each test such as
1.5 and 6, since fixed value often leads to noticeable deviations.

Note that our proposed method need not manually tune parameters, and all parameters are
updated automatically.

5 More Examples
We provide more fitting examples to further demonstrate applications of the proposed method.

(1) 3D magnetometer calibration. Ellipsoid fitting plays a dominate role for mag-
netometer calibration, by which the accurate direction and strength of magnetism can be
measured. For instance, compass as a kind of magnetometer tells us the orientation via the
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Figure 1: Application of the proposed method for 3D magnetometer calibration, by which
the direction and strength of magnetism is measured.

measuring of the earth’s magnetic field. Fig. 1 exhibits several real magnetometer data 1 and
the fitting result by the proposed method. Although the interference of heavy noise and point
heterogeneity, the ellipsoid still provides a fairly exact estimation, thereby the offset can be
effectively eliminated after the calibration.

(2) Shape approximation. As shown in Fig. 2, for the triangle mesh data, ie., "bun
000"2, "Max Planck bust" 3, "cow"4, and "pear"5, we down sample vertices and then directly
input them to our algorithm. As observed, apart from the major part (the part need ellipsoid
fitting), there has plentiful interference (other parts). For instance, the body of bunny is the
main part for fitting, whereas its head and ears are outliers. However, our method is greatly
robust against outliers, and shows sound approximation for the corresponding part. For two
ellipsoid cases, we conduct a simple segmentation after the first fitting. Results indicate that
the proposed method is competent in providing highly accurate approximation.

6 Generalized Geometric Primitive Fitting
Actually, the proposed method can be directly customized for other geometric primitive
fitting. To test this, we randomly generate several point clouds of cylinders, cones and de-
generate planes, which are contaminated by heavy noise and outliers, as illustrated in Fig. 3.
As observed, our algorithm still attains successful fits for all cases. Thereby, replacing the
parametric form of ellipsoids by other quadrics, our proposed framework can be extended to
fit general primitives, especially in the presence of outliers.

1https://github.com/risherlock/Magnetometer-Calibration
2http://graphics.stanford.edu/data/3Dscanrep/
3https://www.mpg.de/institutes
4https://gfx.cs.princeton.edu/proj/sugcon/models/
5https://gfx.cs.princeton.edu/pubs/Kalnins_2002_WND/index.php

https://github.com/risherlock/Magnetometer-Calibration
http://graphics.stanford.edu/data/3Dscanrep/
https://www.mpg.de/institutes
https://gfx.cs.princeton.edu/proj/sugcon/models/
https://gfx.cs.princeton.edu/pubs/Kalnins_2002_WND/index.php
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Figure 2: Application of the proposed method for shape approximation. Although the in-
terference of other parts (outliers), our method still successfully fits the major parts for all
cases.

Figure 3: Generalizing the proposed method for other geometric primitive fitting under the
contamination of noise and outliers, as observed, our method still attains promising results.
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