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1 DUB Architecture
In this section, we show the difference of Attention-based Up-sample Block (AUB) and
Direct Up-sample Block (DUB). Fig. 1(a) and Fig. 1(b) show the architectures of AUB
and DUB, respectively. Compared with AUB, DUB directly concatenates feature maps from
Image Branching and the outputs from Transformer Layer at the same scale.

(a) AUB (b) DUB

Figure 1: Architecture comparison between AUB and DUB. The orange route denotes el-
ements from Transformer Layer. The green route represents the feature maps from Image
Branching.

2 Influence of the factor λ

We calculate attention maps used in AS as follows:

Âi, j = SOFT MAX(−λ |D̂− d̂i, j|), (1)

where D̂ represents the depth map which is 16× down-sampled from the ground-truth depth
map and normalized to [0,1], d̂i, j represents the depth value at position (i, j), λ is a hyper-
parameter. Fig. 2 shows attention maps with different λ values. It can be seen that with the
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increase of the λ value, small regions are be paid attention to. In our experiment, we set λ

to 8.

(a) RGB (b) Depth Map (c) λ = 1 (d) λ = 4 (e) λ = 8 (f) λ = 10

Figure 2: Attention maps (c) (d) (e) (f) shows the correlations between the red point and
other pixels.

3 Additional Qualitative Results
We present the qualitative comparison results with the state-of-the-art methods in Fig. 3
and Fig. 4. Fig. 3 shows the depth results on the KITTI dataset. Our proposed method is
compared with VNL [3] and LapDepth [2]. It can be observed that in the areas with complex
lighting situations, such as car windows (Row 1, 3, 5 in Fig. 3) and shadow regions (Row 4,
8 in Fig. 3), our method always provides better depth results. Fig. 4 shows the depth results
on the NYU Depth V2 dataset. Comparing with SARPN [1], LapDepth [2] and our network
without Attention Supervision (AS), our method demonstrates more accurate depth results
around the planes (Row 4, 9 in Fig. 4) and overcomes the artifacts coming from shadows
(Row 5, 6 in Fig. 4). By comparing Fig. 4(e) and Fig. 4(f), it is obvious that after adding
the Attention-based Up-Sample Block (AUB), our method predicts depth maps with sharper
boundaries.

(a) RGB (b) Ground Truth (c) VNL [3] (d) LapDepth [2] (e) Ours

Figure 3: Qualitative comparisons with other methods on the KITTI dataset.
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(a) RGB (b) Ground Truth (c) SARPN [1] (d) LapDepth [2] (e) w/o AUB (f) Ours

Figure 4: Qualitative comparisons with other methods on the NYU Depth V2 dataset.
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(a) Scene 1 (b) Scene 2

(c) Ground Truth (d) LapDepth [2] (e) Ours w/o AS (f) Ours

(g) Ground Truth (h) LapDepth [2] (i) Ours w/o AS (j) Ours

Figure 5: Point clouds comparison with other methods on the NYU Depth V2 dataset.
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4 Point Cloud Reconstructions
The point clouds shown in Fig. 5 are rendered from depth maps in the same way as [4]. Point
clouds in same row are captured from the same viewpoint. We compare our method with
LapDepth [2] and our method without AS. It can be observed that point clouds generated
from our proposed method is closer to that of ground-truth, especially around the wall and
floor.
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