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Abstract

Main contributions of our work are two-fold. First, we present a Self-Attention Mo-
bileNet, called SA-MobileNet Network that can model long-range dependencies between
the image features instead of processing the local region as done by standard convolu-
tional kernels. SA-MobileNet contains self-attention modules integrated with the in-
verted bottleneck blocks of the MobileNetV3 model which results in modeling of both
channel-wise attention and spatial attention of the image features and at the same time
introduce a novel self-attention architecture for low-resource devices. Secondly, we pro-
pose a novel training pipeline for the task of image tilt detection. We treat this problem
in a multi-label scenario where we predict multiple angles for a tilted input image in a
narrow interval of range 1◦ or 2◦, depending on the dataset used. With the combina-
tion of our novel approach and the architecture, we present state-of-the-art results on
detecting the image tilt angle on mobile devices as compared to the MobileNetV3 [9]
model. Finally, we establish that SA-MobileNet is more accurate than MobileNetV3 on
SUN397 [30], NYU-V1 [21] and ADE20K [35] datasets by 6.42%, 10.51%, and 9.09%
points respectively and faster by at least 4 milliseconds on Snapdragon 750 Octa core.

1 Introduction
Smartphones have become the most convenient way to capture high-quality photos and
videos. Mobile phone cameras have evolved over the past years with both hardware as
well as software improvements with AI-enabled technologies that allow the users to take
extremely high-resolution images. But many of us are not professional photographers and
usually take images that are slightly skewed from the exact upright orientation. This reduces
the aesthetic quality of images and people want that their holiday snapshots are of the highest

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, etprotect unhbox voidb@x protect penalty @M  {}al.} 2019

Citation
Citation
{Xiao, Hays, Ehinger, Oliva, and Torralba} 2010

Citation
Citation
{Silberman and Fergus} 2011

Citation
Citation
{Zhou, Zhao, Puig, Fidler, Barriuso, and Torralba} 2017



2 SIDDHANT ET AL: SELF-ATTENTION MOBILENET FOR IMAGE TILT CORRECTION

(a) Image is rotated 2◦ anti- (b) Image is rotated 8◦ clock- (c) Image is rotated 2◦ anti-
clockwise to align verti- wise to make it upright. clockwise to make the

cal lines on the truck horizon horizontal.
Figure 1: Results on Image Tilt Correction in Real-Time. Proposed model is able to detect
large as well as finer tilt angles. The predicted tilt angles are shown in a red box at bottom-
left area of the images. Tilt angle value inside the box implies that image is tilted by that
value in anti-clockwise direction from the upright orientation.

quality. Professional photographers use softwares like Lightroom or Photoshop to straighten
the tilted vertical or horizontal lines.

We present an On-Device AI solution for automatic tilt angle detection of smartphone
images and correct their orientations with a click to improve the overall picture quality. The
proposed model is able to make inferences using mobile CPUs or GPUs with low latency
values and at the same time respect the privacy of the user by removing the need to up-
load images to a server for processing. Currently, MobileNetV3 [9] networks are the most
popular lightweight models for mobile devices for many computer vision tasks like image
classification or object detection.

In this paper, we are proposing Spatial Self-Attention Modules that can learn long-range
dependencies and global context within the input images. Furthermore, to enable on-device
inference on resource-limited devices, we integrated these modules with the Inverted Bottle-
neck blocks [20] of MobileNetV3 to give us a novel neural network architecture for mobile
devices called Self-Attention MobileNet or SA-MobileNet. The proposed network is able
to learn the spatial information and overcomes the limitations of traditional convolutional
kernels that only looks for different features in an image and not their relative positioning.

We are also proposing a simple yet effective training approach, described in Section 3.2,
to handle the image tilt detection problem that scales to variety of image datasets containing
natural, or indoor/outdoor images. The combination of the Self-Attention MobileNet and
proposed training approach gives us state-of-the-art results for detecting image tilt for mobile
devices in real-time.

Therefore, our two main contributions are:

• Self-Attention MobileNet for mobile/IoT devices for real-time inference.
• A novel approach to tackle fine-grained Image Tilt Detection problem.

2 Related Works
Image Tilt Angle Detection is a long-standing problem. Before the advent of deep learning,
low-level image features were used to detect the upright image orientation like Ciocca et
al. [3] who used LPB-based image features and logistic regression for this problem. But
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Figure 2: Complete Attention Module with Squeeze-and-Excite and Spatial Self-Attention.
(a) e: expansion factor, (b) C‘ =C/r, r: reduction ratio (r = 8). Best viewed in color.

when the deep learning models for computer vision became popular, researchers started
using high-level image features [8, 28, 33]. Fischer et al. [6] used AlexNet [11] to regress the
exact orientation angle of tilted images but there angle error was high(≈ 20◦) for complete
360◦ range of image orientations. Applying CNNs for coarse-angle estimation and fuzzy
logic for precise angle estimation on edge pixels [17, 18] was recently employed to take into
account the ambiguity and uncertainty in image orientations. Horizon lines and vanishing
points are also used as cues for optimal image tilt detection but these methods are generally
limited to outdoor images with a clear horizon line [5, 28] whereas our work addresses
natural images in diverse environments.

Digital camera parameters from accelerometer data are also used to rectify the image ori-
entations. Do et al. [4] proposed spatial rectifier with ResNet-18 [7] backbone network for
surface normal estimation of indoor images. G Olmschenk et al. [14] proposed an Inception-
Net [24] style architecture for estimating the pitch and roll of the camera from a single 2D
image. Xian et al. [29] used surface geometry to determine surface normals for estimating
2DoF [23] camera orientations. But all of the above methods use neural networks that need
high computational resources and it is not possible to deploy them in mobile/IoT devices.

Self-Attention has also gained a lot of popularity in recent years. It has quickly be-
come state-of-the-art baselines for many NLP tasks [2, 15, 26] and after that it has also
became popular in many computer vision tasks like Image Captioning [31], Image Question
Answering [32], and Object Detection [1]. Self-Attention modules can model long-term de-
pendencies and overcome the limitation of convolutional kernels which operate in a local
neighbourhood [34]. BAM [16], CBAM [27], and ULSAM [19] are light-weight attention
modules for spatial attention but they use pooling operations that result in loss of information
of the feature maps.

3 Method
We now present the architecture of our proposed Self-Attention MobileNet model and the
novel training pipeline for Image Tilt Detection in detail in this section.

3.1 Self-Attention Convolutional Module

Squeeze-and-Excite [10]: The squeeze operation captures channel-wise dependencies in a
feature map by using global average pooling operation along the channel dimension to ag-
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(a) −1◦ (b) 0◦ (c) 1◦ (d) −5◦

(e) −1◦ (f) 0◦ (g) 1◦ (h) 5◦

Figure 3: Images (a), (b), (c) and (e), (f), (g) can be perceived as upright because of very
small deviations from the upright orientation. But the Fig.(d) needs to be rotated 5◦ clock-
wise and Fig.(h) by 5◦ anti-clockwise to make them upright.

gregate information of each 2D feature map through a scalar value that results in a channel
descriptor vector. During the excite operation, we learn channel-wise dependencies by pass-
ing the channel descriptor vector through a 2-layer neural network which outputs channel-
wise attention weights. This attention vector is then multiplied by the input feature map to
adaptively weight each channel and improve the representational power of the feature maps.

Spatial Self-Attention: Standard convolutional kernels process a local neighborhood of
an image at a time because of the smaller receptive field sizes for the input feature maps. Al-
though, the kernels with large receptive fields can cover more region but that will incur high
computational costs because of the increased number of parameters and training time. Self-
attention modules can complement convolutional layers by learning global or long-range
dependencies between different image regions without much computational overhead. To
learn spatial self-attention, we take the feature map vectors along the channel dimension
and calculate their key, query, and value representations in a low-dimensional subspace.
The dot product of all key vectors with every other query vector with the softmax function
gives us the attention weights between all the regions of the image. More specifically, af-
ter squeeze and excite operation, let the feature map be F ∈ RH×W×C and after expanding
it along spatial dimensions we get the matrix F ∈ RN×C, which contains N(= H ·W ), C-
dimensional vectors representing various image regions. We use learnable weight matrices
WK ∈ RC×C‘,WQ ∈ RC×C‘, and Wv‘ ∈ RC×C‘ to calculate key(K), query(Q) and value(v‘)
vectors respectively. Here C‘ =C/r, r > 1, r is the reduction ratio which is used to decrease
the dimensions of the vectors and calculate attention weights and values in a low-dimensional
subspace. Let FN×C ≡ F

K = F ·WK, Q = F ·WQ, v‘ = F ·Wv‘ (1)

β
N×N = Q ·KT =⇒ ai j =

exp(βi j)

∑
N
j=1 exp(βi j)

, i, j = 1, . . . ,N (2)

VN×C‘ = a ·v‘ (3)

Here, a ∈ RN×N is the self-attention matrix, and ai j is the attention weight that region i puts
on region j. V ∈ RN×C‘in Eq.3 is a value matrix in the low-dimensional subspace and we use
WV ∈ RC‘×C to project it into the original subspace to get the self-attention feature maps,
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1 1.a 1.b 1.c 4 4.a 4.b 4.c

2 2.a 2.b 2.c 5 5.a 5.b 5.c

3 3.a 3.b 3.c 6 6.a 6.b 6.c

SET-A SET-B
Figure 4: In the heatmaps, the red region indicates the query region and the white regions
represent the points where the query region focuses its attention. Figures. 1.a, 2.a, and 3.a
indicates that the query region on the horizon attends to other regions on the horizon. For the
SET-B, the input images do not have straight lines but the model is able to understand the
general upright orientation. In figures 4.c and 6.a, the query region on ground is attending to
other ground regions. Similarly, in figures 4.a and 6.b the query region in sky is attending to
another point in the sky. In figures 1.c, 2.c, and 3.c and figures 4.c, 5.c, and 6.c, the query
region is attending to a far location indicating the learning of long-range dependencies.

S ∈ RN×C. Finally, we will add a residual connection to get the final output F̃N×C.

S = V ·WV (4)

F̃ = F+αS (5)

where α is a trainable scalar parameter initialized to 0. Eq.5 implies that the model first
learns image features around the local neighbourhood and then gradually moves on to learn
global dependencies [34]. The combination of squeeze and excite operation and spatial self-
attention gives us the feature maps that are rich in content as well as contextual information.

The learning of global long-range dependencies and relative positioning of different
image regions improved the model predictions on image tilt detection tasks. From the
heatmaps, in Fig.4, we can see that the query (red) region is able to shift its attention with the
image orientation. Specifically, in Fig.4-[1.a, 2.a, 3.a] (left column), the query (red) region
on the horizon was able to focus on the other horizon points despite different orientations of
the same image. In Fig.4-SET-B (right column), there is no clear horizon line but the query
regions are able to attend to relevant regions for tilt detection. For example, query region
on the ground in heatmaps-[4.b, 5.b] is attending to other points on the ground and query
region in Fig.4-[4.a, 6.b] in sky is focusing on other points above the skyline. Also note that
query regions in Fig.4-[1.c, 2.c, 3.c] (left column) are able to attend to far locations which
indicates learning of long-range dependencies and spatial information. Therefore, for de-
tecting image tilt angle, the neural network model needs to learn the relative positioning of
the image pixels to differentiate between various distinct image orientations.
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3.2 Image Tilt Detection
3.2.1 Motivation and Problem Modeling

Although, the intuitive approach for tackling this problem seems to be regression where we
use a Deep CNN to extract image features and minimize the angular distance between the
ground truth angle and the predicted angle. But training deep neural networks for regres-
sion tasks is difficult [12] and when we enter the domain of light-weight models, like Mo-
bileNetV3 or SA-MobileNet, with few parameters as compared to ResNet-50 [7] or VGG-
16 [22] networks, it becomes extremely difficult to achieve good results on regression tasks.
In contrast to regression, deep neural networks achieve highly accurate results on classifica-
tion tasks but we cannot model the image tilt detection as a single label classification problem
due to a variety of reasons. If the prediction is 1◦− 2◦ off from the true label, the network
will penalize it equally as it would if the prediction is off by 10◦−20◦ or more. This might
not be necessary because 1◦ or 2◦ variation in the image tilt angle might not be significant.
Therefore, we train the model to predict multiple angles within a narrow interval of the
ground truth tilt angle and penalize only those values that are outside this narrow range.

3.2.2 Training Pipeline

We model the problem of Image Tilt Detection in a multi-label scenario where we train our
proposed neural network model with a tilted input image and the corresponding ground truth
label vector with multiple labels of tilt angles in a narrow interval of either ±1◦ or ±2◦

depending on the dataset quality. Images in the training dataset were assumed to be upright
and assigned 0◦ ground truth label by default. Every image is rotated by each angle from
0◦,1◦, . . . ,359◦ and center-cropped before giving to the model as input.

To enable multi-label training for predictions of image tilt angles within the narrow inter-
val, the ground truth label vectors are constructed as 360-dimensional vectors with value of
1 at indices G− I, . . . ,G−1,G,G+1, . . . ,G+ I, and value of 0 at rest of the indices. G and I
are the ground truth image tilt angle and length of the narrow interval respectively. Note that
the ground truth label vector is cyclic. If G+ x ≥ 360, for some 0 ≤ x ≤ I, then we set the
value 1 at index (G+ x)%360. Similarly, if G− x < 0, then we set 1 at index G− x+ 360.
Last layer of the model is a 360-dimensional layer, representing all the integer angles, with
sigmoid activation function that holds the prediction scores of the tilt angles for a given in-
put image. We use Binary Cross Entropy loss function to calculate the loss between given
ground truth label vector and the predicted outputs.

L(y,p) =− 1
D

 D

∑
i=1

yi log pi +(1− yi) log(1− pi)

 (6)

Here D = 360 and y and p are groundtruth and the predicted vectors respectively.

4 Experiments
4.0.1 Model Prediction

For the final prediction, we take the highest scoring label, in the last layer, and if more than
two labels have the highest scores, we simply take their average value. From our experi-
ments, we saw that most of the times, when more than two labels have the highest score,
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Previous Works Accuracy (%) ↑ Angle Error (◦) ↓
Ciocca et al. [3] (LPB-based featutes) 71.87 -
CNN + Fuzzy Edge Detection 85.21 -
Fischer et al. [6] (AlexNet) - 21.23
Maji et al. [13] (Xception) - 7.89
MobileNetV3 (baseline) 85.97 5.06
ResNet-50 (baseline) 93.67 3.98
SA-MobileNet (proposed) 92.39 4.27

Table 1: Accuracies and angles errors of various baseline methods on SUN397 dataset. ↑ / ↓
indicates that higher/lower is better respectively.

it was 1.0 and the corresponding labels were consecutive and belonged to set of narrow in-
terval around the ground truth tilt angle. This implies that there is an implicit correlation
between the ground truth labeled angles within the narrow interval that helps the model to
determine the image orientation over the complete 360◦ range. Another advantage of using
this method, over single-label classification, is that the network only penalizes those output
values that are outside the narrow interval around the ground truth tilt angle. Intuition is
that if the ground truth image tilt angle is 45◦, then we do not want to penalize 44◦ or 46◦

prediction as much as we want to penalize 42◦ or 46◦ predictions because though they are
close to the ground truth value they will not make image look upright.

4.1 Model Architecture
For the MobileNetV3 model, the input image size is 224× 224 and the subsequent layers
decrease the feature map size to 7× 7 in strides of 2. We integrated Spatial Self-Attention
Modules within MobileNetV3 to get Self-Attention MobileNet. Spatial Self-Attention Mod-
ules were applied to the blocks of sizes 56× 56, 28× 28, 14× 14, and 7× 7. We selected
these blocks because they are high-level image features which encodes meaningful image
representations. Furthermore, the computational costs of calculating self-attention on these
blocks was not very high because of the small feature map sizes. We also replaced the
1280-dimensional fully connected layer of MobileNetV3 with a 720-dimensional layer. This
helped in reducing the MAdds that were added due to the introduction of spatial self-attention
operations. As a result, the proposed SA-MobileNet model, when converted to Tflite, came
out faster by an average of 4ms than the corresponding MobileNetV3 Tflite model when
tested on Snapdragon 750 Octa core. All the convolutional kernels and fully connected
layers were initialized from pretrained ImageNet [11] weights apart from the newly added
self-attention blocks that were initialized randomly.

The network was trained end-to-end using RMSprop [25] optimizer with momentum
0.9. The initial learning rate was 0.001 and it was decayed using exponential learning rate
schedule with 40k decay steps and 0.95 decay rate.

4.2 Datasets
We used publicly available SUN397 [30], ADE20K [35], and NYU-V1 [21] datasets. SUN397
is a scene understanding dataset that contains 397 well-sampled categories of diverse scenes
with 108,754 distinct images. There are 10 train-test partitions for the dataset, and for our
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(a) ADE20K (b) NYU-V1 (c) SUN397 (d) Regression loss
Figure 5: Figures (a), (b), and (c) contains evaluation accuracy plots over training steps for
various datasets. The accuracy curve of SA-MobileNet (blue) model is above the accuracy
curve of MobileNetV3 (green) model. Fig (d) contains the plots for regression losses calcu-
lated using angle error loss function (Eq.8) and trained on ADE20K dataset.

evaluation dataset, we took the union of images from all the test partitions that resulted in
15,691 images. The remaining 92,793 images were used for training. ADE20K dataset is
another scene parsing dataset with 20,210 images in the training set and 5,000 images in the
evaluation set. SUN397 and ADE20K datasets contain wide variety of natural images that
may or may not contain straight vertical or horizontal lines. That is why we set the interval
length, I = 2◦ while training on these two datasets. We also used NYU-V1 Depth dataset
that contains frames from video sequences of various indoor scenes recorded from both RGB
and Depth camera of Microsoft Kinect. Before using this dataset to train our model, we had
to make the images upright because all the images were skewed as seen from Fig.6. We
straightened the set of 2,282 images and used 2000 images for our training and 282 images
for testing. We split the data in such a way that frames from the same indoor scene does not
come in both the splits. We set the interval length I = 1◦ because this dataset was manually
annotated and we saw highly accurate results on the evaluation data.

4.3 Results
We train MobileNetV3 model as a baseline for mobile devices on SUN397, ADE20K and
NYU-V1 dataset using the training approach, described in section 3.2. The proposed SA-
MobileNet consistently performs better in terms of detection accuracies and angle errors on
all the evaluation datasets as seen from Fig.5 and Table.2. We also trained MobileNetV3
and SA-MobileNet for regressing the image tilt angle, by using angle loss function, given by
Eq.7 and 8, and AdaDelta optimizer on ADE20k dataset. The SA-MobileNet model gives us
lower angle error when compared to the MobileNetV3 model as shown in Fig 5.d and Table
3.

e =
∣∣atrue−apred

∣∣ (7)
Langle = min{e,360− e} (8)

Here atrue and apred are groundtruth and predicted angles respectively, with values ranging
from 0◦ − to− 359◦. We also use this loss function to calculate the angle errors of the
model trained with the multi-label approach. From Table.2 we see that the proposed SA-
MobileNet model resulted in very low-angle errors on NYU-V1, ADE20K, and SUN397
dataset when compared with MobileNetV3 model. From the evaluation accuracy plots in
Fig.5.a, Fig.5.b, Fig.5.c, we can see that the accuracy curve of our model (blue) is above the
curve of MobileNetV3 model (green) during training for all the datasets. In Fig.5.d, we plot
angle errors for both the models which were trained for regressing the exact orientation angle
on ADE20K dataset. The SA-MobileNet model produced low angle errors when compared
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Model NYU-V1 ADE20K SUN397
Acc(%) ↑ AE◦ ↓ Acc(%) ↑ AE◦ ↓ Acc(%) ↑ AE◦ ↓

MobileNetV3 88.02 15.79 87.68 16.84 85.97 5.06
ResNet-50 94.59 4.67 97.84 3.09 93.67 3.98

SA-MobileNet 98.53 3.45 96.77 3.45 92.39 4.27
Table 2: Evaluation accuracies and angle errors of the MobileNetV3, ResNet-50, and SA-
MobileNet models on various datasets with the proposed tilt angle detection approach. Acc:
Accuracy (%) and AE: Angle Errors(◦). ↑ / ↓ indicates that higher/lower is better respec-
tively.

Model Latency(↓) Parameters(↓)
(milliseconds) (millions)

MobileNetV3 79 4.2
SA-MobileNet 75 4.5

Table 3: Tflite models were tested on Snap-
dragon 750, Octa core (2x 2.2 GHz, 6x 1.8
GHz) for latency measurements.

Model Angle
Error◦ (↓)

MobileNetV3 21.07
SA-MobileNet 15.53

Table 4: Regresion loss on
ADE20k dataset trained with
angle loss function Eq.8.

to the MobileNetV3 model. This also justifies that the long-range dependencies learned
by the self-attention modules are necessary for image tilt detection. We also trained
the ResNet-50 model as a baseline to validate the effectiveness of our training pipeline.
Though, the ResNet-50 model outperforms both the MobileNetV3 and SA-MobileNet, the
improvement is marginal despite the huge difference in the number of parameters between
the ResNet-50 and the light-weight models.

Comparison with previous works: We also present comparison of our training ap-
proach with previous works for this problem in Table 1. Over the past few years many
different methods have been proposed to tackle this problem but they have high angle errors
or low accuracies. ResNet-50 baseline model gives the lowest angle error on the test dataset
to give state-of-the-art results. However, the ResNet-50 network cannot be deployed on low-
resource devices because it has over 25 million parameters. But the proposed Self-Attention
MobileNet has around 4 million parameters with low-latency values and state-of-the-art re-
sults for mobile devices that makes it ideal to be deployed in smartphones for real-time
inferences.

5 Conclusion and Future Work

We present a novel neural network model for mobile/IoT devices powered with the Self-
Attention Modules. We also present highly accurate results on the task of Image Tilt De-
tection and are able to correct image orientations on smartphone in real-time. Our proposed
training approach is also very simple but effective for this task. In the future work, we can
use a dynamic value of the narrow interval, I, which can be unique for each image within
limit.

We will also validate the effectiveness of Self-Attention MobileNet on other downstream
tasks like image classification, object detection and image segmentation applications for
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(a) 3◦ anticlockwise (b) 4◦ clockwise (c) 5◦ clockwise
Figure 6: Samples of images NYU-V1 dataset. Most the images(left) were skewed and had
to be rotated to make them upright(right).

mobile devices.
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