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Abstract
Source-free unsupervised domain adaptation aims to learn a model that generalizes

well on a target domain given the pre-trained source model and unlabeled target data.
Traditional unsupervised domain adaptation methods are mostly not applicable to this
setting since no source data are available. To tackle this problem, we propose to generate
labeled surrogate source training data from the source model by fixing the model and op-
timizing the inputs. To avoid naive local fittings to individual instances and in light of the
model optimization process, we further enforce model gradient based global fitting con-
straints on the whole dataset generation and solve the formulated optimization problem
using an ADMM algorithm. The generated labeled source training data can then be used
to deploy existing unsupervised domain adaptation methods. Furthermore, we propose
to incorporate the unlabeled target data into the domain adaptation process to improve
generalization in the target domain with a mutual information loss. Experiments show
that our proposed method can achieve the state-of-the-art results on benchmark datasets.

1 Introduction
Supervised deep learning has achieved great success with the help of large amounts of la-
beled data, which induce expensive data annotation cost. Unsupervised domain adaptation
(UDA) reduces such cost by exploiting labeled data from an auxiliary source domain to help
train a prediction model in an unlabeled target domain. Due to the distribution discrepancy
between source and target domains, the model trained on the source domain cannot gen-
eralize well on the target data. Thus most unsupervised domain adaptation methods seek
to reduce the domain discrepancy given the theoretical guarantee in [1]. One prevailing
paradigm is to learn domain-invariant representations by minimizing the cross-domain fea-
ture discrepancy with certain metric such as maximum mean discrepancy (MMD) [11] or
through adversarial learning schemes [7, 21]. Some other works [5, 26, 30] improve domain
adaptation by utilizing semi-supervised learning or self-training with pseudo-labels.

However, traditional unsupervised domain adaptation setting assumes the availability of
source domain data when training models for the target domain. This may not be guar-
anteed in many real-world scenarios. For example, for privacy protection, users’ personal
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data cannot be stored after models being trained according to the laws of many countries;
patients’ medical data are not allowed to be made public without permission. Companies
may release their models but data won’t be accessible for commercial purposes. All these
situations induce a more challenging domain adaptation setting, source-free unsupervised
domain adaptation (SFUDA). In this setting, only source model and unlabeled target data
are available and the goal is still to learn a prediction model that generalizes well in the tar-
get domain. Traditional UDA methods may not be applicable in this setting as they require
both source and target domain data. To tackle this challenge, some researchers have made
efforts on developing new source-free domain adaptation methods. For example, Li et al.
[18] utilize conditional GANs to generate labeled target data and fine-tune the source model
with multiple semi-supervised model regularization terms. Kurmi et al. [15] use conditional
GANs to simultaneously perform data generation and domain adaptation. Kim et al. [12]
exploit pseudo-labels in the target domain to improve the model generalization performance.

In this paper, we propose an optimization-based training data generation method to sim-
ulate the source domain data and facilitate the reuse of existing UDA methods in the new
source-free unsupervised domain adaptation setting. Different from the existing works, we
have no need to introduce extra generative models such as conditional GANs. Instead, we
simply generate a surrogate source training set based on the given source prediction model
from the optimization perspective. First, we fix the model parameters and minimize the stan-
dard cross-entropy loss by updating the input training data. In order to avoid local fittings to
individual instances, we further deploy model gradient based constraints to enforce global
fitting to the whole simulated training set. We solve the resulted optimization problem by
developing an Alternating Direction Method of Multipliers (ADMM) [3]. With the gener-
ated source training data, existing UDA methods can be reused to handle domain adaptation
in the new problem setting. To increase the generalization capacity of the target model, we
further exploit the unlabeled target domain data by incorporating a mutual information loss
into the adaptation process. To show the effectiveness of the proposed source data generation
method, we conduct experiments using several UDA methods with the generated source data.
Our method yields similar domain adaptation results to the ones produced with the original
source domain data. When unlabeled target domain data is incorporated, our method pro-
duces the state-of-the-art performance in the source-free unsupervised domain adaptation
setting on standard benchmarks.

2 Related works
Unsupervised Domain Adaptation. Most unsupervised domain adaptation methods seek
to reduce the cross-domain discrepancy based on the theoretical guarantee in [1]. Related
works can be divided into two categories, metric-based methods and adversarial training
methods. Metric-based methods enforce the model to learn domain-invariant representations
by minimizing feature discrepancy between domains with certain distance metrics. Exam-
ples of these metrics include the maximum mean discrepancy (MMD) [20], the moment
matching [4], and the Wasserstein distance [16]. Inspired by the Generative Adversarial
Networks (GAN) [8], adversarial training has been utilized to align cross-domain distribu-
tions in different levels, including the feature-level [7, 21], input-level [25], and output-level
[28]. Regularization terms from semi-supervised learning approaches have also been uti-
lized to adapt the source model using unlabeled target data. The Mean teacher method [27]
has been used in [5] to regularize the model predictions to be consistent across the student
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and teacher models. Entropy minimization [9] for unlabeled target data enforces the model’s
decision boundaries to be far away from data-dense regions [26]. Virtual adversarial training
[22] acts as a locally-Lipschitz constraint in [26] to guarantee the empirical approximation of
conditional entropy when used together with the entropy minimization. Pseudo-labeling [17]
has also inspired the self-training methods for unsupervised domain adaptation. The method
in [30] alternately selects high-confident pseudo-labels with certain criteria and re-trains the
model with the pseudo-labeled target data.

Source-Free Unsupervised Domain Adaptation. In source-free unsupervised domain
adaptation setting, labeled source data are unavailable, which makes the problem more chal-
lenging. Although UDA has been popularly studied, the source-free UDA only starts attract-
ing attentions. The effective performances in this setting are typically obtained by deploying
semi-supervised techniques. Li et al. [18] propose to use the conditional GAN to generate
labeled target data through the input-level adversarial training and semantic consistency con-
straint, and fine-tune the target model with several semi-supervised learning terms. PPDA
in [12] assigns pseudo-labels to target samples based on a prototype classifier and intro-
duces a sample-level re-weighting scheme to get more confident pseudo-labels. SDDA [15]
uses conditional GANs to simultaneously generate labeled source data and perform domain
adaptation to fine-tune the target model. Liang et al. [19] deal with a slightly different source-
free unsupervised domain adaptation problem which allows additional efforts in training the
original source models and changing the model architectures. Other different source-free
settings considered in the literature include the universal source-free domain adaptation [13]
and open-set source-free domain adaptation [14]. Different from these previous studies, our
method simply simulates the source training data based on the principle of source model
optimization without introducing extra generative models.

3 Proposed Method

We consider the following source-free unsupervised domain adaptation setting. We have
access to the unlabeled data Xt in the target domain and a prediction model trained in the
labeled source domain, Fs(Φs(·)), which consists of a feature extractor Φs(·) and a classifier
Fs(·). However, the original labeled source data (Xs,Ys) used to produce the source model
or any other data in the source domain are not accessible. We also assume the two domains
share the same prediction label space and aim to produce a prediction model that performs
well in the target domain.

In this section, we present the proposed two stages source-free unsupervised domain
adaptation method as illustrated in Figure 1. First, we fix the source model and generate
surrogate source data based on the model optimization principle by minimizing the cross-
entropy training loss, while enforcing the model gradient based constraints to improve global
fitting. Then with the generated surrogate source data, we deploy existing UDA methods and
incorporate the unlabeled target data to learn a target predict model that can generalize well.

3.1 Surrogate Source Training Data Generation

We motivate our source training data generation idea from the supervised source model train-
ing problem. Given the labeled source domain data (Xs,Ys), the source prediction model can
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Input (update)
source model (fixed)

target model (update)

Figure 1: Illustration for the proposed method. Top: fix source model and optimize target-
image initialized source training images. Bottom: the generated source training images are
used to perform domain adaptation.

typically be trained by minimizing the following L2-norm regularized cross-entropy loss:

min
Θ
L(Θ) = LCE(Fs ◦Φs(Xs;Θ),Ys)+

γ

2
‖Θ‖2

F (1)

where Fs ◦Φs denotes the composition function of Fs and Φs, and Θ = {Θφ ,Θ f } denote the
corresponding model parameters; γ is a hyperparameter, ‖ · ‖F denotes the Frobenius norm,
and the regularizer is typically incorporated to avoid overfitting.

Now given the prediction model with fixed parameters Θ, we can reverse the training
process to treat the input data as variables and generate a source instance x̂s from a given
label ŷs by minimizing the objective above in a similar way as follows:

x̂s = argmin
xs
LCE(Fs ◦Φs(xs;Θ), ŷs) (2)

Our purpose here is not to generate a source domain instance/image with good qualities, but
rather to generate a source training dataset that can reproduce the given prediction model
Fs ◦Φs(·;Θ). For this purpose, the set of source instances generated need to be sufficiently
diverse to represent the original source distribution in the ideal case. As we do not have
any information about the source distribution, we have a naturally diverse target dataset Xt .
Hence we propose to generate a diverse surrogate source training set (X̂s,Ŷs) by starting from
Xt . Specifically, we initialize X̂s as Xt and use the predicted labels on X̂s under the current
source prediction model as the corresponding labels Ŷs. Then we can generate each surrogate
training instance in X̂s through Eq.(2) by using a simple gradient descent algorithm.

Nevertheless, the data generation above only considers the local fitting of each instance
to the source model by decoupling the data set generation into separate individual instance
generations. Although the initialization procedure can induce diverse data generation, it can
still deviate from the goal of generating surrogate training set to reproduce the source predic-
tion model. To this end, we further propose to enforce the global fitting of the generated data
set (X̂s,Ŷs) based on the optimality condition of the prediction model optimization. Specifi-
cally, one necessary condition the optimal model parameters in Eq.(1) need to satisfy is that
the gradient becomes zero; that is,

∇ΘL(Θ) = ∇ΘLCE + γΘ = 0 (3)
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Note for given Θ, the gradient ∇ΘL(Θ) is a global function of all the input training instances,
and it is not decomposable over individual training instances. Therefore, to ensure the gen-
erated surrogate training data satisfy the optimality condition for the model parameters, we
can incorporate the condition in Eq.(3) as global equality constraints for our source training
data generation process and solve the following global data fitting problem:

X̂s = argmin
Xs
LCE(Fs ◦Φs(Xs;Θ),Ŷs) s.t. ∇ΘLCE + γΘ = 0 (4)

Although the principle of the global surrogate source data generation above is clear, the
gradients of LCE w.r.t. the feature extraction parameters Θφ are hard to compute layerwise
over the deep neural networks as an explicit function of the training data. We hence relax the
constraints to consider only the gradients of LCE w.r.t. the classifier parameters Θ f , i.e.

X̂s = argmin
Xs
LCE(Fs ◦Φs(Xs;Θ),Ŷs) s.t. ∇Θ fLCE + γΘ f = 0 (5)

The commonly used deep learning models (e.g. ResNet) usually utilize a single fully-connected
layer with softmax activations as the classifier F . In this case, the gradients of LCE w.r.t. Θ f
can be computed as

∇Θ fLCE =
1
N
(softmax(Fs ◦Φs(Xs;Θ))− Ŷs)

> ·Φs(Xs;Θφ ), (6)

where softmax(·) is the softmax function applied on each row of its input matrix Fs◦Φs(Xs;Θ)
that denotes the model output on each instance, each row of the label matrix Ŷs is a one-hot
label indicator vector, and Φs(Xs;Θφ ) denotes the feature matrix of all the N instances.

We propose to solve the equality constrained optimization problem in Eq.(5) by using an
alternating direction method of multipliers (ADMM) [3]. We first derive the original problem
into the following augmented Lagrangian formulation: maxΛ minXs Lρ(Xs,Λ), where

Lρ(Xs,Λ) = LCE(Fs ◦Φs(Xs;Θ),Ys)+ tr(Λ>(∇Θ fLCE + γΘ f ))+
ρ

2
‖∇Θ fLCE + γΘ f ‖2

F . (7)

Here Λ is the Lagrangian dual variable matrix associated with the equality constraints and ρ

is a penalty hyperparameter. This can then be solved using the ADMM algorithm presented
in Algorithm 1. In each iteration of the ADMM algorithm, we alternately update the primal
variables Xs and the dual variables Λ. As the number of instances in Xs, N, is typically large,
it is unrealistic to optimize all the instances Xs simultaneously considering the limitation of
the GPU memory. Inspired by the mini-batch SGD, we propose to update Xs in a batch-
wise coordinate descent procedure. For each batch XB, we fix the other variables and take K
gradient descent steps to update XB.

3.2 UDA with Generated Surrogate Source Data
The source data generation method above enforces that the generated training data can be
utilized to produce the original source model parameters and hence can be used as a surrogate
source training dataset to deploy standard unsupervised domain adaptation methods.

As reviewed in Section 2, the unsupervised domain adaptation methods typically train the
target prediction model on the labeled source data while using a regularization term to reduce
the cross-domain discrepancy based on the given source data and target data. For example,
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Algorithm 1: ADMM algorithm
Input : source model Fs ◦Φs(·;Θ), unlabeled target data Xt , the maximum iteration

# M, the maximum # of gradient steps K, stepsize η , penalty parameter ρ

1 Initialize Λ = 0,Xs = Xt ;
2 Ŷs← Fs ◦Φs(Xt ;Θ);
3 for i = 1 : M do
4 for batch (XB,ŶB)⊂ (Xs,Ŷs) do // batch update on primal
5 for k = 1 : K do
6 XB = XB−η

∂

∂XB
Lρ(Xs,Λ);

7 end
8 end
9 Λ = Λ+ρ(∇Θ fLCE + γΘ f ) ; // update dual variables

10 end
Output: generated source data (Xs,Ŷs)

the adversarial learning based domain adaptation method CDAN [21] deploys a conditional
adversarial loss to minimize the domain discrepancy in the extracted feature space:

min
Φt

max
D
Ladv(Xs,Xt ;Φt ,D) = Exs∈Xs log[D(Φt(xs)⊗gs)]+Ext∈Xt log[1−D(Φt(xt)⊗gt)],

(8)
where the domain discriminator D is introduced to align cross-domain conditional feature
distributions by playing the min-max game, ⊗ denotes the Kronecker product, gs and gt are
the predicted probability vectors on instance xs and xt , i.e. g = softmax(Ft ◦Φt(x)). With the
given source model and the generated surrogate source training data (X̂s,Ŷs), we can initialize
the target prediction model with the source model such as Ft =Fs and Φt =Φs, and then fine-
tune the target model, in particular the target feature extractor Φt , by playing the min-max
game with the adversarial loss: minΦt maxDLadv(X̂s,Xt ;Φt ,D). With an effective surrogate
source data generation, we would expect the target model obtained in this manner will have
a good adaptation performance in the target domain; in the best case, its performance can be
very close to the standard CDAN method applied with the original labeled source data.

Moreover, to better exploit the unlabeled target data, we further extend the deployment of
UDA methods into a Semi-Supervised Fine-Tuning framework with the generated Surrogate
Source Data (SSFT-SSD) by incorporating the unlabeled target domain data Xt into the pre-
diction model fine-tuning process in a semi-supervised manner that involves updating both Ft
and Φt . Specifically, we propose to deploy a mutual information loss on the unlabeled target
data. The mutual information criterion has been shown to be efficient for semi-supervised
learning [2]. This criterion captures the mutual information between the inputs and outputs
of a given prediction model and its empirical computation form can be defined as follows:

LMI(Xt ;Φt ,Ft) = H(Ext∈Xt [p(Y|xt)])−Ext∈Xt [H(p(Y|xt))] (9)

where p(Y|xt) = softmax(Ft ◦Φt(xt))) is the predicted probability vector on xt , and H(·)
denotes the entropy function. The first term in this mutual information criterion is the entropy
of the averaged prediction vector over all samples which encourages the model predictions
to be balanced across all samples. The second term is the negative averaged entropy which
enforces the model predictions to be confident. With the CDAN adaptation strategy, our final
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fine-tuning model can be formulated as:

min
Φt ,Ft

max
D
−LMI(Xt ;Φt ,Ft)+λLadv(X̂s,Xt ;Φt ,D). (10)

which can be solved using the standard min-max gradient descent algorithm through a
gradient-reverse layer [6].

4 Experiments
We conducted two sets of experiments on the standard benchmarks. In the first set of ex-
periments we tested the proposed surrogate source data generation method by deploying
two existing UDA methods. In the second set of experiments, we compared our SSFT-SSD
framework1 with the state-of-the-art source-free unsupervised domain adaptation methods.

4.1 Experimental Setting
Datasets. We conducted experiments on the following benchmark datasets: Office-31 [24],
Office-Home [29], and VisDA-2017 [23]. Office-31 is a standard small-sized visual domain
adaptation benchmark which contains images of 31 categories from three domains: Ama-
zon (A), DSLR (D) and Webcam (W). Office-Home is a medium-sized dataset with images
belonging to 65 categories from four distinct domains: Artistic images (Ar), Clip Art (Cl),
Product images (Pr), and Real-World images (Rw). VisDA-2017 is a large-scale synthetic-
to-real dataset with images in 12 categories from two domains: Synthetic and Real.

Implementation Details. We used the same network architecture as the previous meth-
ods for fairness: on Office-31 and Office-Home, ResNet-50 [10] is used as the backbone
network, while ResNet-101 [10] is used on the VisDA-2017 dataset. Following [6], the
fully-connected (FC) layer in the ResNet network is replaced with a bottleneck and one FC
layer, where the bottleneck layer is composed of one FC layer with 256 units and an one-
dimensional Batch Normalization (BN) layer. The batch size is set as 64. For the source
data generation, the maximum step number K is set to 10, the stepsize η is set to 10, γ and ρ

are set to 0.01, and the maximum iteration number M is set to 3. For the UDA training with
generated source data, we adopt the mini-batch SGD algorithm with momentum 0.9. Fol-
lowing [6], the learning rate is adjusted per batch iteration according to ηi = η0(1+α i)−β ,
where α = 0.001,β = 0.75 and i is the iteration index. The initial learning rate η0 is is set
as 0.0001 for the pre-trained backbone module and 0.001 for the bottleneck and FC layers.

4.2 Results of UDA with Generated Surrogate Source Data
To investigate the effectiveness of the surrogate source data generation method, we con-
ducted experiments to compare the performance of the classic UDA methods using the gen-
erated source data with their performance obtained when using the original source data. In
principle, the proposed source data generation method can be used by any UDA methods to
solve the SFUDA problem. In this experiment, we deployed two standard UDA methods,
DANN [7] and CDAN [21]. For each UDA method, we compared their results with the
original source data (denoted as “+original”), the surrogate data generated with local fitting

1Code is available at: https://github.com/cnyanhao/SSFTSSD.
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Table 1: Accuracy (%) of UDA methods on Office-31 dataset (ResNet-50)
Methods A→ D A→W D→ A D→W W→ A W→ D Avg.
Source-only 80.5 74.7 63.0 95.7 62.3 97.8 79.0
DANN+original 83.6 91.4 73.3 97.9 70.4 100.0 86.1
DANN+local 85.1 83.0 70.5 97.5 69.4 99.4 84.2
DANN+global 85.9 82.9 71.6 97.7 69.9 99.6 84.6
CDAN+original 89.9 93.8 73.4 98.5 70.4 100.0 87.7
CDAN+local 85.1 84.4 72.2 97.7 70.6 99.6 84.9
CDAN+global 85.7 84.3 72.5 98.1 71.8 99.8 85.4

Table 2: Accuracy (%) of UDA methods on Office-Home dataset (ResNet-50)
Methods Ar�ClAr�PrAr�RwCl�ArCl�PrCl�RwPr�ArPr�ClPr�RwRw�ArRw�ClRw�PrAvg.
Source-only 43.8 66.8 74.9 50.9 61.9 63.6 51.7 37.1 72.7 64.4 43.0 76.6 59.0
DANN+original 53.8 62.6 74.0 55.8 67.3 67.3 55.8 55.1 77.9 71.1 60.7 81.1 65.2
DANN+local 47.7 72.1 77.1 55.6 67.0 68.2 56.8 41.0 75.9 68.1 46.3 79.2 62.9
DANN+global 48.4 72.4 77.2 55.6 68.1 68.2 56.9 41.9 76.3 67.7 46.3 79.1 63.2
CDAN+original 55.2 72.4 77.6 62.0 69.7 70.9 62.4 54.3 80.5 75.5 61.0 83.8 68.8
CDAN+local 46.9 73.1 78.5 57.8 70.1 70.3 58.3 40.9 77.4 68.8 45.3 80.2 64.0
CDAN+global 46.8 73.2 78.6 57.7 70.7 70.2 58.6 40.3 77.4 69.5 45.8 79.9 64.1

(denoted as “+local”) and global fitting (denoted as “+global”) respectively. We also com-
pared them with the baseline result yielded by directly applying the source model, denoted
as “Source-only”. The comparison results on the three datasets, Office-31, Office-Home and
VisDA-2017, are reported in Table 1, 2 and 3 respectively.

We can see that with our proposed surrogate source data generation, both global fitting
and local fitting outperform Source-only with large performance gains, which validates that
the generated source data are effective in aligning the cross-domain distributions and improv-
ing the adaptation performance in the target domain. Moreover, both “+local” and “+global”
achieve comparable performance with “+original”. Note the performance of DANN+original
and CDAN+original can be treated as the upper bound performance of these methods un-
der the source-free setting. These comparison results validated that our proposed surrogate
source data generation methods can generate useful data which are able to approximate the
original source training data from the perspective of domain adaptation and be combined
with standard UDA methods to tackle the SFUDA problem with inaccessible source data.
Between the local and global fitting methods, the surrogate source data generated using
global fitting can achieve better performance than those generated using local fitting. This
verifies that the optimality condition constraints incorporated in global fitting do help gen-
erate source data that are more consistent with the source model. Despite the difference,
the results do not show much of the potential drawback of the local fitting procedure. The
possible reason is that the source and target domains in these datasets share similar label
distributions, and using the target domain data as the initial values for surrogate source data
generation can naturally help promote the data diversity and distribution fitting in the source
domain, which originally can be drawbacks of the local fitting method.

4.3 Results of the SFUDA Methods
Previous results have shown that the generated source data are useful and can be combined
with traditional UDA methods to help align cross-domain distributions. In the second set
of experiments, we further investigate our proposed Semi-Supervised Fine-Tuning frame-
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Table 3: Accuracy (%) of UDA methods on VisDA-2017 dataset (ResNet-101)
Methods plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
Source-only 83.1 23.8 57.4 74.5 67.3 1.4 88.9 9.3 74.3 40.5 76.2 3.2 50.0
DANN+original 93.5 74.3 83.4 50.7 87.2 90.2 89.9 76.1 88.1 91.4 89.7 39.8 79.5
DANN+local 89.8 69.5 78.9 70.3 92.1 49.0 91.4 77.0 77.0 52.7 78.1 37.1 71.9
DANN+global 91.6 70.9 77.4 70.7 92.9 53.9 91.1 74.5 77.4 61.1 75.6 36.4 72.8
CDAN+original 94.0 69.2 78.9 57.0 89.8 94.9 91.9 80.3 86.8 84.9 85.0 48.5 80.1
CDAN+local 93.1 61.4 68.3 74.3 85.8 57.5 94.0 71.1 88.5 63.2 84.7 29.2 72.6
CDAN+global 93.0 61.0 80.2 73.3 92.5 34.7 93.0 76.7 90.0 82.5 79.9 33.2 74.1

Table 4: Accuracy (%) of SFUDA methods on Office-31 dataset (ResNet-50)
Methods source training A→ D A→W D→ A D→W W→ A W→ D Avg.
Source-only 7 80.5 74.7 63.0 95.7 62.3 97.8 79.0
SDDA 7 85.3 82.5 66.4 99.0 67.7 99.8 83.5
3C-GAN 7 92.7 93.7 75.3 98.5 77.8 99.8 89.6
SSFT-SSD(Ours) 7 95.2 95.0 72.7 98.7 73.5 100.0 89.2
SHOT-IM 3 88.8 90.8 73.6 98.4 71.7 99.9 87.2
SHOT 3 93.1 90.9 74.5 98.8 74.8 99.9 88.7

work with the generated Surrogate Source Data (SSFT-SSD) under the source-free UDA
(SFUDA) setting, by comparing its results with the reported results of some state-of-the-art
SFUDA methods, including SDDA [15], PPDA [12], 3C-GAN [18], SHOT-IM and SHOT
[19]. The SHOT models [19] take additional advantage of deploying extra efforts in training
the source models to facilitate source-free unsupervised domain adaptation. Here we simply
use their results as references. The proposed SSFT-SSD framework can be combined with
any UDA methods. Following our methodology section, here we adopted the CDAN [21].
The comparison results on the three datasets are reported in Table 4, 5, and 6 respectively.

Table 4 presents the results on the six domain adaptation tasks of Office-31. By combin-
ing with the results reported in Table 1, we can see that both 3C-GAN and SHOT outper-
form the standard UDA methods, DANN+original and CDAN+original. The reason lies in
that these SFUDA methods have largely adopted semi-supervised learning terms to exploit
the unlabeled data in the target domain. This is the motivation that we develop our SSFT-
SSD to integrate the strengths of UDA and semi-supervised learning through surrogate data
generation. We can see that our SSFT-SSD method further improves our previous best re-
sults obtained with CDAN+global in Table 1. SSFT-SSD outperforms the Source-only on
all tasks and increases the average accuracy by 10.2 percentage points. Comparing to the
state-of-the-art SFUDA methods, among the six tasks, SSFT-SSD produces the best results
on three tasks, while 3C-GAN produces the best results on two tasks and SDDA on one task.
In terms of average performance over all tasks, SSFT-SSD performs very similar to 3C-GAN
while being much simpler without 3C-GAN’s multiple terms, and outperforms SDDA with a
notable gain of 5.7 percentage points. Although the SHOT methods deploy additional efforts
in source model training, our proposed model still outperforms them.

Table 5 reports the results on the 12 domain adaptation tasks of the Office-Home data-
set. Again, our SSFT-SSD further improves the previous CDAN+global and outperforms
the upper bound CDAN+original produced in Table 2. This demonstrates the efficacy of the
semi-supervised term we adopted. Compared with Source-only, our proposed SSFT-SSD
improves the classification accuracy on all tasks and increases the average accuracy by 10.8
percentage points. We also compared with the results of the state-of-the-art method PPDA
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Table 5: Accuracy (%) of SFUDA methods on Office-Home dataset (ResNet-50)

Methods
source

trainingAr�ClAr�PrAr�RwCl�ArCl�PrCl�RwPr�ArPr�ClPr�RwRw�ArRw�ClRw�PrAvg.

Source-only 7 43.8 66.8 74.9 50.9 61.9 63.6 51.7 37.1 72.7 64.4 43.0 76.6 59.0
PPDA 7 48.5 71.3 75.6 63.9 69.0 72.1 62.4 43.5 76.0 70.4 50.1 76.1 64.9
SSFT-SSD(Ours) 7 51.7 76.0 79.9 66.8 75.8 77.2 63.9 52.1 80.6 73.5 57.1 83.0 69.8
SHOT-IM 3 52.8 72.9 78.4 65.4 73.8 74.1 64.6 50.8 78.9 72.7 53.5 81.2 68.3
SHOT 3 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6

Table 6: Accuracy (%) of UDA methods on VisDA-2017 dataset (ResNet-101)

Methods
source

training plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

Source-only 7 83.1 23.8 57.4 74.5 67.3 1.4 88.9 9.3 74.3 40.5 76.2 3.2 50.0
PPDA 7 81.5 79.4 80.3 61.8 92.3 91.9 84.5 82.7 86.5 58.4 74.2 43.5 76.4
3C-GAN 7 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SSFT-SSD(Ours) 7 95.4 86.5 79.3 51.5 92.9 94.5 82.1 79.7 90.0 87.1 87.8 57.9 82.1
SHOT-IM 3 89.9 80.1 79.1 50.9 88.0 90.5 78.2 78.5 89.3 80.2 85.8 44.9 77.9
SHOT 3 92.6 81.1 80.1 58.5 89.7 86.1 81.5 77.8 89.5 84.9 84.3 49.3 79.6

[12]: SSFT-SSD outperforms PPDA consistently across all the 12 tasks with notable perfor-
mance gains. For the favorably trained SHOT models [19], SSFT-SSD can still outperform
SHOT-IM in terms of average performance, while being slightly inferior to SHOT.

Table 6 presents the results on VisDA-2017. We can see that our SSFT-SSD method
further improves our previous best results obtained with CDAN+global in Table 3 on this
dataset as well. SSFT-SSD outperforms the Source-only and increases the average accuracy
by 32.1 percentage points. Compared to the state-of-the-art SFUDA methods, SSFT-SSD
produces the best results on seven classes while 3C-GAN produces the best results on three
classes among the twelve classes. In terms of average performance over all tasks, SSFT-SSD
achieves the state-of-the-art result, and outperforms PPDA with a remarkable gain of 5.7
percentage points. and outperforms the complex model 3C-GAN with 0.5 percentage points.
Moreover, SSFT-SSD notably outperforms both SHOT-IM and SHOT on this dataset.

These results suggest that our proposed novel surrogate source data generation method
is very effective in coping with the inaccessibility of the source training data, and can enable
the successful deployment of standard UDA strategies in the SFUDA setting.

5 Conclusion
In this paper, we proposed a surrogate source training data generation method to enable the
reuse of existing UDA methods in the source-free unsupervised domain adaptation (SFUDA)
setting. Instead of introducing additional generative models, the method simply fixes the
given model parameters and generates the input data by minimizing the supervised training
loss from the optimization perspective. To avoid local fittings to individual instances, we
further enforce a necessary optimality condition for the prediction model as constraints and
solve the resulted problem using an ADMM algorithm. Our experimental results show that
the standard UDA methods with the generated surrogate source data can yield similar adapta-
tion performance as with the original source data. We further extend the deployment of UDA
with the generated surrogate data into a semi-supervised fine-tuning adaptation framework
by incorporating a mutual information term. The experimental results on several benchmark
datasets show this framework yields the state-of-the-art SFUDA performance.
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