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Abstract
In this paper, we present an audio-visual model to perform speech super-resolution at

large scale-factors (8× and 16×). Previous works attempted to solve this problem using
only the audio modality as input, and thus were limited to low scale-factors of 2× and 4×.
In contrast, we propose to incorporate both visual and auditory signals to super-resolve
speech of sampling rates as low as 1kHz. In such challenging situations, the visual fea-
tures assist in learning the content, and improves the quality of the generated speech. Fur-
ther, we demonstrate the applicability of our approach to arbitrary speech signals where
the visual stream is not accessible. Our “pseudo-visual network” precisely synthesizes
the visual stream solely from the low-resolution speech input. Extensive experiments
illustrate our method’s remarkable results and benefits over state-of-the-art audio-only
speech super-resolution approaches. Our project website can be found at http://cvit.
iiit.ac.in/research/projects/cvit-projects/audio-visual-speech-super-resolution.

Figure 1: We present an audio-visual model for super-resolving very low-resolution speech
inputs (example, 1kHz) at large scale-factors. In contrast to the existing audio-only speech
super-resolution approaches, our method benefits from the visual stream, either the real-
visual stream (if available), or the generated visual stream from our pseudo-visual network.

1 Introduction
Conversations in our everyday life are constantly being corrupted by degradation to speech
signals (for example, electronic transmission, and background noise). This has attracted sev-
eral works with profound interests to recover the useful signal from the corrupted mixture.
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Tasks such as speech denoising [14, 26, 31], speaker separation [1, 12], and noise-robust
automatic speech recognition [17, 21, 23] have gained considerable progress in reconstruct-
ing high-quality speech from corrupted inputs. This work aims to handle a different form of
degradation to the speech input: “low sampling rate”. Learning a network to super-resolve
speech would enable a wide variety of real-world applications. Some of them include: (i)
recovering historical public talks and speeches, (ii) enhancing inaudible voices in the videos,
(iii) improving the telephonic user experience by upsampling and rendering high-quality
speech, and (iv) compressing the speech to reduce the bandwidth consumption. Further, sev-
eral downstream tasks like automatic speech recognition [4] and speaker identification [10]
could greatly benefit from speech super-resolution (SR).

Recovering the high-frequency information when the input sampling rate is very low
(for example, 1kHz) is a significant challenge. When the input resolution is so low, the
crucial information present in the speech, including the content and the voice attributes such
as prosody, pitch, and style, are almost entirely lost. Thus, although speech SR has been
extensively studied in the audio processing literature [5, 18, 20], most of these approaches
lead to sub-optimal results for such low-resolution (LR) inputs. In addition, as these methods
are designed for low scale-factors of 2× and 4×, they are not directly extensible for higher
factors, severely limiting their real-world applicability. This can be mainly attributed to the
inadequate prior information considered in the existing works to solve this task, i.e., only
the audio modality. While there have been substantial improvements by incorporating the
visual cues in multiple speech generation tasks [1, 12], speech SR has not yet witnessed the
benefits from the visual stream. This raises an interesting question, “Can we use the visual
stream to super-resolve very low-resolution speech?”.

In this work, we aim to upsample very low-resolution speech signals (of sampling rate
1kHz) by proposing an “audio-visual” network. Inspired by the recent success of visual as-
sistance in tasks such as speech enhancement [1, 12, 14, 24], and speech recognition [2],
we propose to incorporate the visual modality for speech SR for the first time. We hy-
pothesize that using the visual assistance is quintessential to recover the content from very
low-resolution inputs, and significantly improve the speech quality, clarity, intelligibility, and
naturalness.

We demonstrate the applicability of our approach for arbitrary in-the-wild speech signals,
which need not necessarily have an associated visual stream. In such cases, we propose a
“pseudo-visual model” to synthesize the visual stream from the LR speech input. We design
a student-teacher training setup to synthesize the lip movements, which are further utilized as
the input visual stream in our speech SR network. We are the first to perform 16× speech SR
from an input speech with sampling rate as low as 1kHz. We demonstrate that our approach
performs significantly better than the state-of-the-art audio-only approaches in all speech
quality, and intelligibility metrics through extensive experimentation.

To summarize, our significant contributions are: (i) We solve the problem of speech SR
at extreme scale-factors of 8× and 16× which was previously never accomplished in audio
processing literature; (ii) We propose an audio-visual speech SR model that outperforms the
audio-only models, and is applicable in real-world, unconstrained settings; (iii) We show
that our model can be utilized even when the real-visual stream is unreliable or inaccessible.
Our pseudo-visual network solely considers the LR speech, and synthesizes accurate lip
movements, which are then ingested as the visual stream input by our speech SR network.

We provide a demo video in our project website at http://cvit.iiit.ac.in/research/

projects/cvit-projects/audio-visual-speech-super-resolution, which exhibits the dominance
of our approach compared to the audio-only works. The code and the trained models are re-
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leased publicly to encourage future research. In Section 2, we review the existing works in
this space. We then discuss the proposed audio-visual speech SR network in Section 3, and
present the experimental results in Section 4. This is followed by an analysis of the different
modules used in our architecture in Section 5, and finally, we conclude our work in Section 6.

2 Related Work
Audio-only Speech Super-Resolution: The speech community has studied the problem
of upsampling the frequency of speech signals for a long time. This problem was popularly
known as “bandwidth extension” in pre-deep learning era. Initially, classical signal process-
ing approaches were used [11, 19] to solve the task of bandwidth extension. This was fol-
lowed by methods depending on the Gaussian mixture models to predict the high-frequency
speech based solely on the low-frequency input [6]. Soon, deep learning led to renewed
interest in this problem under a new alias, i.e., “audio super-resolution”. Inspired by the suc-
cess of image super-resolution techniques using deep learning, Li et al. [22] were the first to
use a simple neural network to learn mappings between high-resolution and low-resolution
audio signals. This was further improved by various techniques like residual-based bottle-
neck network [18], “Temporal-Film (TFiLM)” [5], and diffusion probabilistic model “NU-
Wav” [20], significantly enhancing the SR performance. While the current state-of-the-art
methods work directly on low-resolution speech, they are proposed for 2× and 4× SR which
is in stark contrast to our attempt of 16× SR.

To improve these networks’ robustness and real-world applicability, we consider using
additional assistance in terms of the visual modality, particularly the lip movements. In
recent years, several impressive works have been proposed for other related problems where
the visual stream is used to boost the quality of the generated speech. We now review these
advancements in the multi-modal space, and discuss how we incorporate visual assistance
for the task at hand.

Correlation between Speech and Lip Movements: Cross-modal assistance for audio and
visual modalities has proven beneficial in various tasks such as object localization [3, 25],
audio source separation, and denoising [1, 12, 14], image animation [7, 28], audio-visual
speech recognition [2], and speech generation from lip movements [27]. Since lip move-
ments and speech are naturally correlated, the phoneme-viseme mapping between them is
widely explored in recent times. Popular works like “The Conversation” [1] to isolate the
individual speakers, a multi-stream network for solving the “cocktail-party” problem [12],
and multisensory feature based model [24] to solve tasks such as sound localization, action
recognition, and audio source separation, have shown remarkable results by using the vi-
sual cues. These works attempted to train models by feeding “multi-speaker speech” and lip
movements of the target speaker to isolate the speech corresponding to individual speakers.
The idea of exploiting the lip movements to provide additional information about the clean
speech was also extensively used in [14]. Here, the authors propose to generate a synthetic
stream of information in the form of lip movements by considering the noisy speech as in-
put. The generated pseudo-visual stream acts as a “visual noise filter” and helps to distill the
clean speech from a given noisy speech segment.

Motivated by these advancements, we explore super-resolving low-resolution speech by
using lip movements as additional cues. The assistance from the visual stream allows us to
handle large scale-factors like 16× compared to 4× as done in the previous works. Further, to
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enable our model to be applied in practical situations, we extend the pseudo-visual approach
proposed in [14] for speech SR. Thus, along with the audio-visual approach, we also develop
an audio-only system that incorporates the advantages of the visual stream without requiring
a real visual stream.

3 Audio-Visual Network to Super-Resolve Speech

The overview of our proposed audio-visual speech SR network is depicted in Figure 2.
Given the LR speech signal, Slr = {lr1, lr2, ..., lrM} and the corresponding visual frames,
Vreal = {V1,V2, ...,VK}, our goal is to generate the HR speech signal, Shr = {hr1,hr2, ...,hrN}.
During inference, if the frame sequence Vreal is not available, we synthetically generate the
frames Vsynth = {v1,v2, ...,vK} from the LR speech input Slr, as we will shortly discuss.

3.1 The Architecture

As discussed in Section 1, when the speech resolution is low, the loss of information is so
paramount, that the semantic details of speech are almost completely lost. In such cases, we
show that the visual stream can aid in recovering the content, thereby improving the quality,
and coherence of super-resolved speech. Our proposed audio-visual model comprises three
modules: (i) Speech Encoder, (ii) Visual Encoder, and (iii) Speech Decoder. We elaborate
on each of these modules below.

Speech Encoder We consider a 1-second segment of LR speech Slr and perform linear inter-
polation to upsample the LR speech to the target resolution (Slu). We do this upsampling step
to use the same architecture irrespective of the input resolution. We apply short-time Fourier
transform (STFT) to convert the raw waveforms to linear spectrograms. A window length of
25ms with a hop length of 10ms sampled at 16kHz is considered for computing STFT. The
obtained complex STFT of dimension (T,257) is decomposed into the magnitude and the
phase components and normalized in the range of [0,1]. We concatenate these components
along the frequency axis to create (T,514) dimension representation that acts as input to
the speech encoder. The speech encoder is a series of residual 1D convolution layers which
processes these time-frequency representations and generates speech embeddings (T,600).

Visual Encoder We extract the visual features from the visual stream input Vreal using the
visual encoder. We design our visual encoder to process the input frames of dimension
(T

4 ,3,96,96) by gradually reducing the spatial dimension to (T
4 ,600,1,1) using a stack of

3D convolution layers with residual connections. Our visual encoder is similar to the visual
stream of “Perfect Match” model [9]. It captures the short-range motion information using
a temporal receptive field of 5 frames in the first convolution layer. The output of the visual
encoder is upsampled 4-times along the temporal axis using nearest neighbour interpolation
to match the spectrogram temporal dimension T . Thus, we finally obtain the visual embed-
dings of dimension (T,600). Note that although the visual encoder takes real-visual stream,
Vreal as input during training, it can accept either Vreal or the synthetic visual stream, Vsynth
during inference. We provide a detailed discussion to generate Vsynth in Section 3.2 below.

Speech Decoder The speech decoder aims to generate a residual mask, which is added to the
input spectrogram Slu to obtain the output spectrogram. Initially, we fuse the learned speech
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Figure 2: We propose an audio-visual network for solving speech super-resolution at large
scale-factors (8× and 16×). Our SR model comprises three major components: (i) visual en-
coder, (ii) speech encoder, and (iii) speech decoder. The visual encoder ingests a sequence of
frames, processes them and generates the visual embeddings. The speech encoder takes the
spectrogram representation from the linearly upsampled speech signal to create the speech
embeddings. These learned visual and speech embeddings are then fused and subsequently
processed by the speech decoder. Our network outputs a residual mask which is added to the
input spectrogram to generate realistic, high-quality (16kHz) speech signals.

and visual embeddings in the latent space to form (T,1200)-dimension features. The de-
coder, which consists of 1D convolution layers, ingests these features and outputs a residual
mask of dimension (T,514). Our experiments use the addition mask to get the spectrogram,
as we found that the output quality is significantly better than using multiplicative masks
(see Table 6 for comparison). The mean absolute error (L1) between the generated, and the
ground-truth HR spectrograms is used as the loss to train our network. Finally, we use the
inverse-STFT (ISTFT) to obtain the speech from the generated spectrograms.

3.2 Speech Super-Resolution using Pseudo-Visual Stream
3.2.1 Synthetic Generation of Frames

Our audio-visual model requires frontal or near-frontal talking-face videos of the speaker to
be available as input. However, we observe that there can be situations, especially in real-
world applications, where the visual stream is corrupted, unreliable, or not present altogether.
The videos where the lip movements are occluded, out-of-focus or even out-of-sync with
the speech cannot be considered as the visual stream input. In such cases, we propose to
synthetically generate the visual stream using our pseudo-visual model. Note that our speech
SR network is trained only using the real visual stream (as it is available during training),
but can ingest the pseudo-visual stream during testing. This clearly demonstrates our SR
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network’s capability and robustness, which adapts well to synthetic data during inference.

3.2.2 Student-Teacher Setup

To synthesize the visual stream from the low-resolution speech input, we adapt a student-
teacher setup inspired by [14]. Specifically, the student model takes the LR speech as input
and generates the frames with an objective to match the teacher model’s output, as shown
in Figure 3. The pre-trained teacher model Wav2Lip [28] produces accurate lip movements
from the HR speech and an identity image. The student model aims to mimic these precise
predictions from the teacher model using the LR speech as input. As done in [14], we
consider using a static identity image (here, Taylor Swift) so that the only visual changes
will be in the lip and jaw region. This will enable the student model to learn the strong
correspondence between speech and lip movements. We use the input representations and
the architecture as done in [14] to train the student model.

Figure 3: We demonstrate the applicability of our proposed SR network by synthesizing the
lip movements in cases where the visual stream is not present. We set up a student-teacher
network to generate the visual stream from the LR speech input synthetically. The student
model aims to imitate the outputs from the pre-trained teacher model (Wav2Lip [28]), which
ingests the HR speech and a static identity to produce accurate lip movements.

4 Experiments and Results

4.1 Dataset and Training Settings
Dataset: We use the publicly available VoxCeleb2 [8] dataset which consists of over 1
million utterances for ∼ 6000 identities. This dataset is highly challenging and popular due
to the wide variations in the identities, languages, and extensive vocabulary. For testing, we
use the official test split from the VoxCeleb2 dataset. Note that there are no overlaps between
the identities used in the training and the testing set; thus, evaluating on it demonstrates the
generalisation ability of our model on completely unseen identities.
Training Setup: We train our network by randomly sampling a 1-second segment of audio
at 16kHz and its corresponding video frames from the VoxCeleb2 train set. The linear spec-
trograms extracted from the audio waveform correspond to T = 100 timesteps for a 1-second
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segment. The corresponding frames are considered at 25 FPS and are resized to 96×96 be-
fore feeding to the visual encoder. We perform all our experiments at scale-factors of 4×,
8× and 16× with the fixed output resolution of 16kHz. The network is trained using the
Adam Optimizer [16] with a learning rate of 10−3 and batch size of 32 and stop the training
when the validation loss plateaus. In our experiments, the model was trained for 50 epochs.

4.2 Results
We now present the results of our audio-visual speech super-resolution for scale-factors of
4×, 8× and 16×. We start by discussing the various existing approaches that we use for com-
parison. This is then followed by the quantitative evaluation (Section 4.2.1) along with de-
tails of the different metrics used. Finally, we also conduct human evaluation (Section 4.2.2)
to highlight the real-world applicability of our approach.

Comparison: We start our comparisons with standard “linearly interpolated” outputs. Next,
since the existing works in the speech SR literature are limited to lower scale-factors, we
train them on the same dataset as our model at all the scale-factors for a fair comparison.
Additionally, we also train an audio-only (AO) baseline of our network by discarding the
visual stream input. Thus, we compare against the following models: (i) Linear interpolation,
(ii) DNN [22], (iii) U-Net [18], (iv) TFiLM [5], (v) NU-Wav [20], and (vi) AO baseline.

4.2.1 Quantitative Evaluation

Evaluation Metrics: We use several popular speech metrics for measuring the quality of
our speech generations. We report Perceptual Evaluation of Speech Quality (PESQ) [29]
which estimates the perceptual quality of the generated speech. To evaluate the intelligibil-
ity of speech, we compute Short-Time Objective Intelligibility (STOI) [30] and Extended
Short-Time Objective Intelligibility (ESTOI) [15]. Finally, as done in most of the speech SR
works [5, 18, 20], we also report the Log-spectral Distance (LSD) [13] metric.

Table 1: Quantitative comparison of different approaches at scale-factors of 4×, 8× and
16×. Our method outperforms the existing audio-only approaches by a large margin, illus-
trating the benefits from the visual stream.

Scale Method Linear
DNN U-Net TFiLM NU-Wav AO Ours Oursfactor [22] [18] [5] [20] baseline (pseudo)

4×

PESQ↑ 3.289 3.304 3.318 3.342 3.397 3.363 3.416 3.429
STOI↑ 0.871 0.888 0.904 0.889 0.892 0.912 0.916 0.917

ESTOI↑ 0.739 0.819 0.825 0.837 0.855 0.843 0.861 0.869
LSD↓ 6.112 6.012 6.004 5.803 5.801 5.799 5.686 5.694

8×

PESQ↑ 2.330 2.243 2.268 2.275 2.219 2.399 2.401 2.814
STOI↑ 0.756 0.749 0.765 0.771 0.774 0.804 0.818 0.832

ESTOI↑ 0.590 0.638 0.667 0.681 0.663 0.705 0.721 0.755
LSD↓ 10.79 7.681 7.325 6.830 9.541 6.220 6.014 5.069

16×

PESQ↑ 1.842 1.639 1.651 1.654 1.526 1.925 2.188 2.237
STOI↑ 0.550 0.653 0.671 0.684 0.598 0.702 0.726 0.762

ESTOI↑ 0.327 0.432 0.480 0.551 0.482 0.593 0.614 0.651
LSD↓ 11.405 9.306 8.993 8.082 9.780 7.841 6.601 5.500

Table 1 shows the results at scale-factors of 4×, 8× and 16×. We can observe that at
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Figure 4: (a) Spectrograms of the ground-truth (GT), linearly upsampled speech, and our
predicted speech. We can see that our network can reconstruct the LR speech, which is close
to the GT speech even at large scale-factors. (b) Performance comparison (metric: PESQ) at
different scale-factors. At higher scale-factors, the gap in the performance of “audio-only”
and “audio-visual” methods emphasizes the importance of the visual stream at larger scales.

smaller scale-factors like 4×, the performance of all the approaches are very similar; the
boost obtained using the visual stream is not significant. However, as the scale-factor in-
creases, all the audio-only methods struggle to recover plausible speech outputs. At higher
scale-factors of 8× and 16×, our method outperforms the other methods by a large margin,
especially in perceptual quality. It is interesting to note that our pseudo-visual model not
only surpasses all the current techniques, but is also very close to our approach that uses
the real-visual stream. This validates the precise lip shape generations of our pseudo-visual
network. Sample spectrograms shown in Figure 4 (a) depicts that our model successfully
reconstructs the high-frequency elements even from very low-resolution inputs.

How does the performance vary when the scale-factor increases? In Figure 4 (b), we
compare the performance of different models at various scale-factors: 4×, 8×, 16×, 24×
and 32×. We can clearly notice the gap between the existing audio-only approaches and our
proposed model. This difference in performance increases with the increase in scale-factor.
Although there is room for improvement at scale-factors of 24× and 32×, the impact and the
usefulness of the visual stream at these scales is impressive. It allows the model to recover
the lost information at larger scale-factors that are otherwise much harder by solely using the
audio modality.

Computation comparison: In Table 2, we compare the number of parameters and the in-
ference time for all the models. Except for the NU-Wav [20], the parameters of our “audio-
visual” model is similar to other “audio-only” models. It is to be noted that although NU-
Wav has fewer parameters compared to ours, in terms of performance, we surpass NU-Wav
by a large margin, especially at higher scale-factors. For comparing the inference time, we
process a 1-second audio segment on a single NVIDIA Geforce RTX 2080Ti GPU. As we
can see from the table, our audio-visual model is faster (2nd best) compared to most of the
existing audio-only models. This is mainly because all the other approaches (except AO
baseline) operate at the waveform level, whereas we take the spectrogram approach which is
considerably faster and also better in terms of performance.

Table 2: Comparison of the model size (in million parameters) and the inference time (in
seconds). Our “audio-visual” model has similar parameters compared to most of the “audio-
only” approaches, with a very low inference time.

DNN [22] U-Net [18] TFiLM [5] NU-Wav [20] AO baseline Ours (pseudo) Ours
# params (M)↓ 69.9 70.9 68.2 3.0 8.1 90.0 69.3
inf. time (sec)↓ 1.113 1.268 0.971 2.921 0.638 0.929 0.873
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Figure 5: Activation maps of the visual encoder for different identities. Although our model
is highly attentive to the lip region, the contributions from other facial areas such as eyes and
cheeks are also noteworthy.

4.2.2 Human Evaluation

To assess the perceptual quality of our speech generations, we conduct a human study. We
randomly select 15 samples from the test set of VoxCeleb2 dataset [8] and generate the
super-resolved signals at scale-factor of 16×. The outputs from our approach and all the
comparison methods are played in random order. We ask 30 participants to rate each of these
speech samples on a scale of 1-5 based on: (a) Quality and (b) Intelligibility. The participant
group consists of people in the age groups of 20-50 and has a nearly equal male-female
ratio. The mean opinion scores (MOS) are reported in Table 3. Inline with our quantitative
evaluations, our method generates speech which is largely preferred over the other methods.

Table 3: Mean opinion scores of different methods based on: (i) Quality and (ii) Intelligibil-
ity. Our method generates plausible speech outputs with higher perceptual satisfaction.

Measure Linear TFiLM [5] NU-Wav [20] AO baseline Ours (pseudo) Ours
Quality 2.057 2.571 2.343 2.643 3.152 3.415
Intelligibility 1.928 2.685 2.369 2.599 3.064 3.282

5 Ablation Studies
We perform several ablation experiments to analyze various aspects of our model. All the
experiments are conducted for 16× SR on the VoxCeleb2 test set [8].

5.1 What kind of Visual Input is the Best?
We analyze different forms of the visual input: (i) the lower half of the face containing lip
and jaw region and (ii) full face. Providing the full face performs better, as observed in
Table 4. This is also reflected by the activation map in Figure 5 which shows that the facial
regions like the eyes, cheeks, and forehead also play a crucial role along with the significant
attention on the lip and jaw regions.

Table 4: Feeding full face to the visual encoder achieves better performance.
Method PESQ↑ STOI↑ ESTOI↑ LSD↓
Lower half 2.425 0.743 0.638 5.633
Full face 2.237 0.762 0.651 5.500

5.2 Robustness to Noise
We show the robustness of our network in handling the noisy inputs. We add the Gaussian
noise at three SNR levels of 5dB, 10dB, and 15dB to the LR speech input. As we can observe
from Table 5, our model can generate plausible speech outputs even for severely degraded
speech inputs.
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Table 5: Our model is robust to noisy inputs and generates plausible speech outputs.
Noise level PESQ↑ STOI↑ ESTOI↑ LSD↓
5dB 2.035 0.702 0.586 6.253
10dB 2.062 0.711 0.602 6.190
15dB 2.075 0.714 0.619 6.033

5.3 Additive Mask v/s Multiplicative Mask
We investigate the performance of different types of masks used in the prior works: (i)
addition mask (used in our work), (ii) multiplication mask (used in [1]), and (iii) complex
ratio mask (cRM) (used in [12]). The results are reported in Table 6. We observe that
although several works benefit from the popular cRM, in our case, a simple addition mask
performs better than the other kinds of masks.

Table 6: Addition mask achieves better performance compared to multiplication masks.
Masks PESQ↑ STOI↑ ESTOI↑ LSD↓
Addition (Ours) 2.237 0.762 0.651 5.500
Multiplication 2.171 0.702 0.601 6.042
cRM 2.217 0.698 0.612 5.848

5.4 Importance of the Student Network
We assess the need for a student model to synthetically generate the visual stream during
inference (if the real visual stream is absent or unreliable). Table 7 shows the comparison of
directly using the teacher Wav2Lip model [28], Wav2Lip trained on the LR inputs and our
proposed student network. We fine-tune the teacher Wav2Lip on the VoxCeleb2 [8] dataset
for fair comparison and give the linearly upsampled speech signal as input (Wav2Lip takes
speech inputs at 16kHz). As we can observe in Table 7, directly using the teacher model fails
to generate plausible speech; this is evident as this network was not intended to work on LR
inputs. The teacher model trained (from scratch) on LR inputs also gives poor performance.
The best results are obtained using our proposed student model, which learns to imitate the
accurate teacher model’s output, thus validating our claim of student-teacher setup.

Table 7: Our student network yields the best performance compared to other alternatives.
Pseudo-visual models PESQ↑ STOI↑ ESTOI↑ LSD↓
Teacher Wav2Lip [28] 1.012 0.637 0.553 8.628
Wav2Lip trained on LR 1.684 0.690 0.581 7.647
Student network (Ours) 2.237 0.762 0.651 5.500

6 Conclusion
In this work, we present the first audio-visual network for super-resolving speech signals.
While the previous works were restricted to 4× SR limiting their practical applicability, our
method effectively super-resolves at higher factors of 8× and 16×. We emphasize the impor-
tance of the visual stream in handling very low-resolution inputs and remarkably improving
the generated speech quality. We also show the real-world applicability of our method in
handling “in-the-wild” speech signals without an associated visual stream. Our designed
pseudo-visual model accurately synthesizes the lip movements solely from the LR speech
input. Our method achieves a considerable boost over the state-of-the-art audio-only ap-
proaches in quantitative metrics and user studies. We believe our work takes a significant
step forward in the audio-visual space.
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